Министерство образования и науки Республики Казахстан

Карагандинский государственный технический университет

	гверждаю» едседатель Уч	неного совета,
-		Газалиев А.М.
<u>~</u>		_ 2015Γ.

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина Fiz(I) 1213 «Физика I»

Модуль FM3 Физико-математический

Специальность 5В073100 «Безопасность жизнедеятельности и защита окружающей среды»

Горный факультет Кафедра физики

Предисловие

Программа обучения по дисциплине для студента (syllabus) разработана: к.х.н., ст.преподавателем Кусеновой А.С., к.ф.-м.н., ст.преподавателем Салькеевой А.К.

Обсуждена на заседании кафедры опротокол № от «»		5 г.				
Зав. кафедрой	_Смирнов Ю).M.	« <u> </u> »_		2015 г.	
Одобрена учебно-методическим телекоммуникаций, (ФЭАТ)	советом	факульте	га эне	ргетики,	автоматики	И
Протокол № от «»	2015r	`-				
Председатель	Тенчург	ина А.Р.	«»		2015r.	
Согласован с кафедрой «Промыша	ленной эколо	гии и хим	иии»			
Зав. кафедройКаб	биева С.К.	«»_		2015	5г.	
Согласован с кафедрой «Руднично	ой аэрологии	и охраны	труда»			
Зав. кафедройШ	Іарипов Н.Х.	«»_		2015	<u>5</u> Γ.	

Сведения о преподавателе и контактная информация

Кусенова Асия Сабиргалиевна, к.х.н., старший преподаватель кафедры физики, Салькеева Айжан Каришовна, к.ф.-м.н., старший преподаватель кафедры физики. Кафедра физики находится в 1 корпусе КарГТУ (г. Караганда, Бульвар Мира, 56), аудитория 408, контактный телефон 565931, доб. 2027, факс: 87212565234. Электронная

почта: IVC@KSTU.KZ.

Трудоемкость дисциплины

	0B				Вид занятий			Коли	Обще	
ф			ко	личество кон	тактных	*********		чест	e	Фор
ec.	кредит	PI		часов		количес	DOODO	во	коли	ма
Семестр	кр	едиты ТЅ	T 014	практичес	лаборатор	TBO	всего	часо	честв	конт
	ОЛ.	ред STS	лек	кие	ные	часов СРСП	часов	В	O	роля
	K	Kp ES	ции	занятия	занятия	CrCII		CPC	часов	
2	3	5	15	15	15	45	90	45	135	Экз.

Характеристика дисциплины

Дисциплина «Физика I» входит в цикл базовых дисциплин (обязательный компонент) является основой развития производства, и те физические явления и процессы, которые еще не применяются в технике, в будущем могут оказаться полезными инженеру.

Дисциплина «Физика I» совместно с курсами высшей математики и теоретической механики составляет основу теоретической подготовки бакалавров и играет роль фундаментальной базы инженерно-технической деятельности выпускников высшей технической школы любого профиля.

Цель дисциплины

Дисциплина «Физика I» ставит целью формирование знаний и усвоение физических явлений и законов современной физики.

Задачи дисциплины

Задачи дисциплины следующие:

- создание у бакалавров основ достаточно широкой теоретической подготовки в области физики, позволяющей будущим инженерам ориентироваться в потоке научной и технической информации и обеспечивающей им возможность применения новых физических принципов в тех областях техники, в которых они специализируются;
- формирование у бакалавров научного мышления и умение оценивать степень достоверности результатов, полученных с помощью экспериментальных или математических методов исследования;
- формирование у студентов приемов и навыков решения конкретных задач из разных областей физики, помогающих им в дальнейшем решать инженерные задачи;
- ознакомление студентов с современной научной аппаратурой, выработка начальных навыков проведения экспериментальных научных исследований

В результате изучения данной дисциплины студенты должны:

иметь представление:

- о границах применимости различных физических понятий, явлений, законов и теорий;

знать:

- основные физические явления и законы классической и современной физики;
- методы физического исследования; связь физики с другими науками и ее роль в решении научно-технических проблем специальности;

уметь:

- использовать современные физические явления и законы в практической деятельности и интерпретировать результаты физического эксперимента;

приобрести практические навыки:

- решения конкретных задач физики и проведения физического эксперимента;

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих дисципли: Mat (I) 1211 Математика I Him 1201 Химия

Постреквизиты

Знания, полученные при изучении дисциплины «Физика I», используются при освоении следующих дисциплин:

Fiz (II) 2214 Физика II

MSK 3215 Методы и средства контроля.

_

Тематический план дисциплины

	Т	рудоемк зан	ость по і ятий, ч.	вида	M
Наименование раздела, (темы)	лек ции	практи	Лабо- ратор ные	С Р С П	C P C
1. Введение. Кинематика.	1	1	1	3	3
Физика как наука о простейших формах движения материи					
и соответствующих им наиболее общих законах природы.					
Важнейшие этапы развития физики - от механики					
Ньютона к теории электромагнитного поля Максвелла и					
рождению квантовых представлений, созданию теории					
относительности и квантовой механики, ставших					
теоретической базой атомной, ядерной физики и других					
разделов современной физики. Методы физического					
исследования: опыт, гипотеза, эксперимент, теория. Роль					
физики в создании и развитии новых отраслей техники и					
новых технологий. Влияние техники на развитие физики.					
Физика и другие науки. Физическое моделирование.					
Общая структура и задачи курса физики.					
Механическое движение как простейшая форма движения					
материи. Пространство и время. Система отсчета. Понятие					
материальной точки. Кинематическое описание движения					
материальной точки. Закон движения. Уравнение					
траектории. Скорость и ускорение как производные					
радиус-вектора по времени. Элементы кинематики					
вращательного движения. Скорость и ускорение при					
криволинейном движении. Угловая скорость и угловое					
ускорение.					
Лабораторная работа№10. «Определение ускорения					
свободного падения»	1	1	2	_	2
2. Динамика материальной точки и твердого тела.	1	1	2	3	3
Законы Ньютона. Масса. Сила. Виды сил в ме-ханике.					
Гравитационные силы. Закон всемирного тяготения. Силы					
упругости. Закон Гука. Силы трения. Инерциальные системы отсчета. Механи-ческий принцип					
1					
относительности. Преобразования Галилея. Неинерциальные системы отсчета. Понятие абсолютно					
твердого тела. Момент силы и момент инерции твердого					
тела. Момент импульса. Уравнение динамики					
вращательного движения твердого тела относительно					
неподвижной оси. Теорема Штейнера.					
Лабораторная работа№5. Определение момента инерции и					
проверка теоремы Штейнера					
3. Законы сохранения.	1	1	2	3	3
Законы сохранения как следствие симметрии пространства			_		
и времени. Система материальных точек. Внешние и					
внутренние силы. Центр масс (центр инерции)					
механической системы и закон его движения. Закон					
сохранения импульса как фундаментальный закон					

T					
природы.					
Энергия как универсальная мера различных форм					
движения и взаимодействия.					
Работа силы и ее выражение через криволинейный					
интеграл. Мощность. Кинетическая энергия механической					
системы и ее связь с работой внешних и внутренних сил,					
приложенных к системе. Потенциальная энергия					
материальной точки во внешнем силовом поле и ее связь с					
силой, действующей на материальную точку.					
Консервативные и неконсервативные силы. Движение в					
центральном поле сил. Закон сохранения энергии в					
механике. Закон сохранения момента импульса.					
Лабораторная работа№1.Определение коэффициента					
трения скольжения					
4. Элементы специальной теории относительности.	1	1		3	3
Постулаты Эйнштейна. Преобразования Лоренца.					
Инварианты преобразований. Релятивистский закон					
сложения скоростей. Релятивистское преобразование					
импульса и энергии.					
Элементы механики сплошных сред.					
Понятие сплошной среды. Общие свойства жидкостей и					
газов. Идеальная и вязкая жидкость. Уравнение Бернулли.					
Ламинарное и турбулентное течение жидкостей. Формула					
Стокса. Формула Пуазейля. Упругие напряжения. Энергия					
упруго деформированного тела					
5. Статистическая физика и термодинамика.	1	1		3	3
Основы молекулярно-кинетической теории. Молекулярно-					
кинетический смысл температуры. Средняя кинетическая					
энергия молекул идеального газа. Термодинамические					
параметры. Равновесные состояния и процессы, их					
изображение на термодинамических диаграммах. Газовые					
законы. Уравнение состояния идеального газа.					
Статистические распределения.					
Распределение Максвелла. Скорости теплового движения					
частиц. Распределение Больцмана для частиц во внешнем					
потенциальном поле. Число степеней свободы.					
Распределение энергии по степеням свободы. Внутренняя					
энергия идеаль-ного газа. Молекулярно-кинетическая					
теория теплоемкости идеальных газов и ее ограниченность.					
6. Основы термодинамики.	1	1	2	3	3
Первое начало термодинамики. Изопроцессы. Обратимые					
и необратимые тепловые процессы. Цикл Карно и его					
КПД. Теорема Карно. Энтро-пия. Второе начало					
термодинамики и его физи-ческий смысл. Статистическое					
толкование второго начала термодинамики. Связь					
энтропии с вероятностью состояния.					
Лабораторная работа№18. Определение C _p /C _v методом					
Клемана и Дезорма			-		_
7. Явления переноса.	1	1	2	3	3
Общая характеристика явлений переноса. Среднее число					
столкновений и средняя длина свободного пробега. Время релаксации. Явления переноса в неравновесных					

		1	1		
термодинамических системах. Молекулярно-кинетическая					
теория явлений пере-носа: теплопроводность, вязкое					
трение, диффузия. Коэффициенты переноса. Реальные					
газы. Эффективный диаметр молекул. Силы					
межмолекулярного взаимодействия. Уравнение Ван-дер-					
Ваальса. Изотермы Ван-дер-Ваальса. Фазовые переходы					
первого и второго рода. Фазовые равновесия и фазовые					
превращения. Уравнение Клапейрона-Клаузиуса.					
Критическая точка. Метастабильные состояния. Тройная					
точка.					
Лабораторная работа№22. Определение коэффициента					
вязкости жидкости методом Стокса					
8. Электростатика.	1	1		3	3
Взаимодействие электрических зарядов. Закон сохранения					
электрических зарядов. Электрическое поле.					
Напряженность электрического поля. Принцип					
суперпозиции. Электрический диполь. Поток вектора.					
Теорема Гаусса. Применение теоремы Гаусса к расчету					
напряженностей электрических полей. Работа					
электрического поля. Циркуляция вектора напряженности					
электрического поля. Потенциал. Связь потенциала с					
напряженностью электростатического поля. 9. Проводники в электростатическом поле.	1	1	2	3	3
	1	1	2	3	3
Электрическое поле в проводнике и вблизи от поверхности					
проводника. Граничные условия на границе проводник –					
вакуум. Электроемкость. Конденсаторы. Емкость					
конденсаторов различной геометрической конфигурации.					
Диэлектрики в электростатическом поле.					
Поляризационные заряды. Поляризованность. Типы					
диэлектриков. Диэлектрическая восприим-чивость					
вещества. Электрическое смещение. Усло-вия на границе					
раздела двух диэлектриков.					
Энергия взаимодействия электрических зарядов. Энергия					
заряженного конденсатора и системы проводников.					
Энергия электростатического поля. Объёмная плотность					
энергии электростатического поля.					
Лабораторная работа№40. Определение емкости					
конденсатора			_	_	
10. Постоянный электрический ток.	1	1	2	3	3
Общие характеристики и условия существования					
электрического тока. Классическая электронная теория					
электропроводности металлов. Законы Ома и Джоуля-					
Ленца в дифференциальной форме. Сторонние силы. ЭДС					
гальванического элемента. Обобщенный закон Ома для					
участка цепи с гальваническим элементом. Правила					
Кирхгофа. Электрический ток в газе и электрический ток в					
плазме.					
Лабораторная работа№39. Определение сопротивления с					
помощью моста Уитстона					
11. Магнитное поле.	1	1		3	3
Вектор магнитной индукции. Принцип суперпозиции.					
Закон Био-Савара-Лапласа. Расчеты магнитных полей					

простейших систем. Сила Лоренца. Движение заряженной частицы в магнитном поле. Эффект Холла. Сила Ампера. Виток с током в магнитном поле. Момент сил, действующий на рамку. Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника с током в магнитном поле.					
12. Магнитное поле в веществе.	1	1	2	3	3
Магнетики. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики. Магнитный гистерезис. Температура Кюри. Закон полного тока для магнитного поля в веществе. Лабораторная работа№48.					
13. Явление электромагнитной индукции.	1	1		3	3
Основной закон электромагнитной индукции. Правило Ленца. Явления взаимной индукции и самоиндукции. Индуктивность длинного соленоида. Коэффициент взаимной индукции. Энергия и плотность энергии магнитного поля. Уравнения Максвелла. Фарадеевская и максвелловская трактовка явления электромагнитной индукции. Ток смещения. Система уравнений Максвелла. Относительность электрических и магнитных полей. Волновое уравнение. Скорость распространения электромагнитного возмущения.	•	•		3)
14. Колебания и волны.	1	1		3	3
Общие характеристики гармонических колебаний. Колебания груза на пружине. Математический маятник. Физический маятник. Сложение колебаний. Векторная диаграмма. Коэффициент затухания. Логарифмический декремент затухания. Вынужденные колебания под действием синусоидальной силы. Амплитуда и фаза вынужденных колебаний. Резонанс.					
15. Волновые процессы.	1	1		3	3
Основные характеристики волнового движения. Уравнения волны. Плоская волна. Бегущие и стоячие волны. Фазовая скорость. Эффект Допплера. Звук. Электромагнитные колебания. Колебательный контур. Свободные и вынужденные электромагнитные колебания. Резонанс. Переменный электрический ток. Закон Ома для переменного тока. Резонанс напряжений и токов.					
ΝΤΟΓΟ:	15	15	15	45	45

Перечень практических занятий

- Тема 1. Кинематика
- Тема 2. Динамика материальной точки и твердого тела
- Тема 3. Законы сохранения
- Тема 4. Элементы специальной теории относительности
- Тема5. Статистическая физика и термодинамика. Статистические распрде- ления.
- Тема 6. Основы термодинамики
- Тема 7. Явления переноса.
- Тема 8. Электростатика
- Тема 9. Проводники в электростатическом поле.
- Тема 10. Постоянный электрический ток
- Тема 11. Магнитное поле
- Тема 12. Магнитное поле в веществе.
- Тема 13. Явление электромагнитной индукции.
- Тема 14. Колебания и волны.
- Тема 15. Волновые процессы. Электромагнитные колебания

Перечень лабораторных занятий

- 1. Лабораторная работа № 10 «Определение ускорения свободного падения»
- 2. Лабораторная работа №5. Определение момента инерции и проверка теоремы Штейнера
- 3. Лабораторная работа № 1.Определение коэффициента трения скольжения 4.

Лабораторная работа № 18. Определение Ср/С методом Клемана и Дезорма

- Лабораторная работа № 22. Определение коэффициента вязкости жидкости методом Стокса
- 6. Лабораторная работа № 40. Определение емкости конденсатора
- 7. Лабораторная работа № 39. Определение сопротивления с помощью моста Уитстона
- 8. Лабораторная работа № «Определение горизонтальной составляющей напряженности магнитного поля Земли»

Темы контрольных заданий для СРС

Тема1. Кинематика

- 1. Что такое составляющая вектора, проекция вектора? Разложение вектора на составляющие.
- 2. Средняя скорость. При каком движении средняя и мгновенная скорости одинаковы?
- 3. Что характеризуют нормальное и тангенциальное ускорения?
- 4. Аналогия между кинематическими величинами поступательного и вращательного движений. Уравнения равномерного и равнопеременного вращательного движения твердого тела вокруг неподвижной оси.
- 5. Задачи 1.5[1], 1.13[1], 1.28[1],1.38[1], 1.36[1].

Тема 2. Динамика материальной точки и твердого тела.

- 1. Силы трения, упругости и гравитационного взаимодействия.
- 2. Механические системы. Что называют замкнутой системой?
- 3. Какие законы сохранения применимы для упругих и неупругих столкновений?
- 4. Потенциальные энергии гравитационного взаимодействия и упруго деформированного тела.
- 5. Задачи 2.4[1], 2.20[1], 2.36[1], 2.65[1].

Тема 3. Законы сохранения.

1. Каков физический смысл момента инерции?

- 2. Моменты инерции тел симметричной формы (стержень, диск, шар).
- 3. Теорема Штейнера и её применение для расчета моментов инерции тел.
- 4. Кинетическая энергия шара радиуса R, движущегося со скоростью υ .
- 5. Задачи 3.1[1], 3.5[1], 3.11[1], 3.41[1].

Тема 4. Элементы специальной теории относительности.

- 1. Преобразования Галилея.
- 2. Постулаты специальной теории относительности.
- 3. Зависимость массы от скорости.
- 4. Парадокс близнецов.
- 5. Границы применимости классической механики.
- 6. Энергия упруго деформированного тела.
- 7. Задачи 17.3[1], 17.6[1], 17.10[1].

Тема 5. Статистическая физика и термодинамика. Статистические распределения.

- 1. Относительные атомные и молекулярные массы.
- 2. Сколько молекул содержится в одном моле вещества?
- 3. Физический смысл давления, температуры.
- 4. Какое соотношение между температурой по шкале Цельсия и абсолютной температурой?
- 5. Задачи 5.2[1], 5.5[1], 5.18[1], 5.27[1].

Тема 6. Основы термодинамики

- 1. Понятие об идеальном газе.
- 2. Теплоемкость. Удельная и молярная теплоемкости. Формула Майера.
- 3. Что такое число степеней свободы и как распределяется энергия по степеням свободы?
- 4. Первое начало термодинамики для изопроцессов.
- 5. Что происходит с внутренней энергией при адиабатическом расширении газа и при его адиабатическом сжатии?
- 6. Задачи 5.161[1], 5.171[1], 5.176[1], 5.196[1].

Тема 7. Явления переноса

- 1. Чем отличается уравнение Ван-дер-Ваальса от уравнения состояния идеального газа?
- 2. Изотермы реального газа.
- 3. Фазовая диаграмма состояния.
- 4. Явления переноса в жидкостях и твердых телах.
- 5. Зависимость коэффициентов переноса от температуры и давления.
- 6. Задачи 6.2[1], 6.9[1], 5.113[1], 5.138[1].

Тема 8. Электростатика.

- 1. Закон сохранения электрического заряда.
- 2. Принцип суперпозиции электрических полей.
- 3. Напряженность и потенциал электрического поля точечного заряда.
- 4. Что называется потоком вектора напряженности через произвольную поверхность?
- 5. Как направлены силовые линии по отношению к эквипотенциальным поверхностям?
- 6. Чему равна работа сил поля по замкнутой траектории движения заряда?
- 7. Задачи 9.1[1], 9.19[1], 9.26[1],9.39[1],9.47[1].

Тема 9. Проводники в электростатическом поле.

- 1. Чему равна напряженность поля внутри проводника в случае равновесия зарядов?
- 2. Как распределен по проводнику сообщенный ему заряд?
- 3. Конденсаторы и их применение в технике.
- 4. Энергия и объемная плотность энергии электростатического поля.
- 5. Задачи 9.79[1], 9.97[1],9.105[1],9.125[1].

Тема 10. Постоянный электрический ток

- 1. Какие условия необходимы для протекания тока?
- 2. Носители заряда в металлах, полупроводниках, электролитах и ионизированных газах.
- 3. От чего зависит сопротивление проводников?
- 4. Параллельное и последовательное сопротивление проводников.
- 5. Правило знаков для законов Кирхгофа.
- 6. Задачи 10.7[1], 10.14[1],10.50[1],10.79[1].

Тема 11. Магнитное поле.

- 1. Напряженность и магнитная индукция конечного линейного проводника с током.
- 2. Напряженность и магнитная индукция кругового витка с током.
- 3. Магнитный момент контура с током.
- 4. Взаимосвязь вектора магнитной индукции с вектором напряженности поля для однородных изотропных сред.
- 5. Магнитное поле соленоида.
- 6. Задачи 11.1[1], 11.2[1],11.16[1],11.85[1].

Тема 12. Магнитное поле в веществе.

- 1. Разность потенциалов на концах проводника движущегося поступательно в магнитном поле с постоянной скоростью.
- 2. Физический смысл индуктивности.
- 3. Индуктивность бесконечно длинного соленоида.
- 4. Задачи 11.95[1], 11.100[1],11.107[1],11.119[1].

Тема 13. Явление электромагнитной индукции.

- 1. Зависит ли от массы период колебаний математического, физического и пружинного маятников?
- 2. Что характеризует начальная фаза колебаний?
- 3. Сложение двух одинаково направленных колебаний.
- 4. Явление резонанса и влияние его на механические системы.
- 5. Задачи 12.1[1], 12.5[1],12.9[1],12.24[1],12.33[1].

Тема 14. Колебания и волны.

- 1. Какие элементы должен содержать колебательный контур для возникновения свободных электромагнитных колебаний?
- 2. Формул Томсона для периода свободных электромагнитных колебаний.
- 3. Добротность контура и взаимосвязь ее с логарифмическим декрементом.
- 4. Условие апериодического разряда в контуре.
- 5. Полное сопротивление (импеданс) колебательного контура.
- 6. Явление резонанса в контуре и его техническое применение.
- 7. Задачи 14.1[1], 14.7[1],14.11[1],14.25[1].

Тема 15. Волновые процессы. Электромагнитные колебания.

- 1. Продольные и поперечные волны.
- 2. Волновой фронт и волновая поверхность.
- 3. Уравнение плоской и сферической волны.
- 4. Фазовая и групповая скорость волн.
- 5. Задачи 13.3[1], 13.7[1],13.10[1],13.28[1],14.1[1].

Критерии оценки знаний студентов

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100%.

График выполнения и сдачи заданий по дисциплине

т рифпи в	ыполнения и сдачи задан			I _	1	
Вид контроля	Цель и содержание задания	Рекомендуе мая лтература	Продолжи тельность выполнения	Форма контро- ля	Срок сдачи	Бал- лы
CPC	Углубить знания по изучаемым темам	Весь перечень чень основной и дополнительной литературы	Ежене- дельно	Теку- щий	Ежене- дельно	2
Защита лабор- аторных работ № 10,1, 5, 18	Углубить знания по теме «Механика» и теме «Молекулярная физика»	[11], [12], [15]	1-7 неделя	Теку- щий	2,3,4, 7 неделя	20
Решение задач на практичес- ких занятиях	Углубить знания по теме «Механика» и теме «Молекулярная физика»	[7], [8], [9]	1-7 неделя	Теку- щий	1-7 неделя	2
Письменный опрос № 1	Проверка знаний по темам «Механика» «Молекулярная физика»	[1], [2], [3] Консп. лекций	7 неделя	Рубеж- ный	7 неделя	7
Защита лабораторной работы №22,40	Углубить знания по теме «Электростатика», «Постоянный ток»	[12], [13], [17]	7 неделя	Теку- щий	8,10 неделя	10
Решение задач на практичес- ких занятиях	Углубить знания по теме «Электростатика»	[7], [8], [9]	8-9 неделя	Теку- щий	8-9 неделя	0.5
Решение задач на практичес- ких занятиях	Углубить знания по теме: «Постоянный электрический ток»	[7], [8], [9]	10 неделя	Теку- щий	10 неделя	1
Решение задач на практичес-ких занятиях	Углубить знания по темам: «Магнетизм», «Колебания и волны».	[7], [8], [9]	11-14 неделя	Теку- щий	11-14 неделя	0.5
Защита лабораторных работ №39,48,	Углубить знания по теме: «Электромагнети-зм»	[13], [14], [17]	12-13 неделя	Теку- щий	11,13 неделя	10
Письменный опрос № 2	Проверка знаний по те- мам:«Электромагнетизм Колебания и волны».	[1], [2], [3] Консп. лекций	14 неделя	Рубеж- ный	14 неделя	7
Экзамен	Проверка усвоения материала дисциплины	Весь пеперечень основной и дополнит. литературы	2 контакт- ных часа	Итого- вый	В перио д сесси и	40
ИТОГО						100

Политика и процедуры

При изучении дисциплины «Физика 1» прошу соблюдать следующие правила:

- 1. Не опаздывать на занятия.
- 2. Не пропускать занятия без уважительной причины, в случае болезни прошу представить справку, в других случаях объяснительную записку.

- 3. В обязанности студента входит посещение всех видов занятий.
- 4. Согласно календарному графику учебного процесса сдавать все виды контроля.
- 5. Пропущенные практические занятия отрабатывать в указанное преподавателем время.
 - 6. Активно участвовать в учебном процессе.
- 7. Быть терпимыми, открытыми, откровенными и доброжелательными к сокурсникам и преподавателям.

Список основной литературы

- 1. Савельев И.В. Курс общей физики. В 5 кн. M. 2001 г.
- 2. Савельев И.В. Курс физики в 3-х томах. М. 1982-1989 г.
- 3. Трофимова Т.И. Курс физики. М. 2004 г.
- 4. Детлаф А.А., Яворский Б.М. Курс физики. М. 1999 г.
- Сивухин Д.В. Общий курс физики в 5-и томах. М. 1977-1986 г.
- 6. Трофимова Т.И. Сборник задач по курсу физики для втузов. М. 2003.
- 7. Волькенштейн В.С. Сборник задач по общему курсу физики. С.-П. 2007.
- 8. Волькенштейн В.С. Сборник задач по общему курсу физики. М. 1988.
- 9. Чертов А., Воробьев А. Задачник по физике. М. 1988 г.
- 10. Иродов И.Е. Задачи по общей физике. М.: Бином. Лаборатория знаний, 2007. 416 с.
- 11. Ясинский В.Б. Лабораторный физический практикум: волновая и квантовая оптика, физика атома и ядра. Учебное пособие. Караганда: Изд-во КарГТУ, 2002 г, 90 с.

Список дополнительной литературы

- 1. Трофимова Т.И. Краткий курс физики. М.: Высш.шк., 2004. 352 с.
- 2. Савельев И.В. Сборник вопросов и задач по общей физике. М.: АСТ, 2004. 472 с.
- 3. Лабораторный практикум по физике. Под ред. Барсукова К.А., Уханова Ю.И. М.: Высш.шк., 1988. 351 с.
- 4. Грабовский Р.И. Курс физики. СПб., М., Краснодар: Лань, 2004. 607 с.
- 5. Лозовский В.Н. Курс физики в 2-х томах. СПб., М., Краснодар: Лань, 2007. 2 т.
- 6. Матвеев, А. Н. Электричество и магнетизм: учебное пособие для физических специальностей вузов. М.: Высшая школа, 1983. 463 с.
- 7. Матвеев, А. Н. Атомная физика: М.: Высшая школа, 1989. 440 с.
- 8. Иродов, И. Е. Квантовая физика. Основные законы. 3-е изд. стер. М. : Бином. Лаборатория знаний, 2007. 256 с. : ил.
- 9. Федосеев, В. Б. Физика: учебник для студентов технических вузов. Ростов H/Д: ФЕНИКС, 2009. 669 с.
- 10. Ясинский В.Б., Кузнецова Ю.А..Методические указания к лабораторным работам по дисциплине "ФИЗИКА": 3.3. Исследование температурной зависимости сопротивления металлов и полупроводников. 3.4. Изучение колебательного контура, резонанс. Караганда: Изд-во КарГТУ, 2006., 30 с.
- 11. Ясинский В.Б. Методические указания к лабораторным работам по дисциплине "ФИЗИКА": 4.3. Изучение дифракции света 4.4. Изучение законов интерференции. Караганда: Изд-во КарГТУ, 2006. 35 с.
- 13. Ясинский В.Б., Кузнецова Ю.А Методические указания к лабораторным работам по дисциплине "ФИЗИКА": 4.6. Изучение поляризации света. Законы Брюстера и Малюса, 4.8. Определение постоянной Планка с помощью внешнего фотоэффекта, 4.9. Изучение внутреннего фотоэффекта. Караганда: Изд-во КарГТУ, 2006. 39

РОГРАММА	ОБУЧЕНИЯ	по лиснипл	ИНЕ ДЛЯ СТУДЕНТ	TA (SYLLAB
. • • • • • • • • • • • • • • • • • • •		7	A	(8 1 11111
	по дисципли	не Fiz(I) 1213 «	«Физика 1»	
	Модуль FM	3 Физико-матем	атический	
	Γοα	изд. лип. № 50 с	or 21 02 2004	
	но к печати	2014 г. Фор	омах 90х60/16. Тираж	ЭКЗ.
O	бъем уч. из	д. л. Заказ №	Цена договорн	ая
100		ство КарГТУ, Ка	раганда, Бульвар Мира	n. 56