Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

ПРИЛОЖЕНИЕ к рабочей учебной программе дисциплины по заочной и дистанционной формам обучения

Дисциплина Fiz 1209«Физика»

Модуль FM 3 Физико-математический

Специальность 5В072900 "Строительство"

Факультет заочного и дистанционного обучения

Кафедра физики

Предисловие

Приложение	разработано:	старшим	преподавателем	кафедры	физики
Кузнецовой Ю.А.					

Обсуждено на зас	седании кафедры фи	зики		
Протокол №	OT «»		2016 г.	
	Смирнов Ю			2016 г.
	(подпись)			
Одобрена Учебн	о-методическим Сов	ветом факу	льтета эне	ргетики и теле
коммуникаций:				
Протокол №	от «»	2016	б Γ.	
Председатель	Тенчурин	ıa A.P. «	»	2016 г.
Согласована с ка	федрой "Строительн	ные матери	алы и техі	нология"
Зав. кафедрой	Рахимова Г.М.	« _ »		_2016 г.

Сведения о преподавателе и контактная информация

Ф.И.О. Кузнецова Юлия Александровна,

Ученая степень, звание, должность <u>старший преподаватель</u> Кафедра физики находится в 1 корпусе КарГТУ (г. Караганда, Бульвар Мира, 56), аудитория 408, контактный телефон 565931, доб. 2027.

Трудоемкость дисциплины по формам обучения

		-6]	Вид заняти	й				_
	•	кр		ко	личество кон	нтактных		DCA	иче)B) ()
	естр	чество дитов	LS		часов		количе-	все-	коли	часов	контроля
	Эемес	Количес дил	ES	лек-	практиче-	лабора-	ство ча-	ча-	бщее	CTBO 1	
		ОЛИ		ции	ские заня-	торные	сов СРС	СОВ	п9(CI	Форма
		X		ции	RИТ	занятия		СОВ			Ф
-	2	3	5	10	6	4	80	90	9	0	Экз.

Содержание дисциплины по видам занятий и их трудоемкость

	Трудоемкость по видам занятий, ч.				
Наименование раздела, (темы)	лекции	практиче- ские	лаборатор- ные	CPC	
1. Физические основы классической ме-					
ханики					
Предмет механики. Классическая меха-					
ника. Физические модели: материальная					
точка, система материальных точек, аб-					
солютно твердое тело, сплошная среда,					
пространство и время.	_			_	
Механическое движение как простей-	1	1	_	3	
шая форма движения материи. Пред-					
ставления о свойствах пространства и					
времени, лежащие в основе классиче-					
ской (ньютоновской) механики. Эле-					
менты кинематики материальной точки.					
Скорость и ускорение точки. Нормаль-					
ное и тангенциальное ускорения.					
2. Динамика материальной точки и по-					
ступательного движения твердого тела.					
Закон инерции и инерциальные системы					
отсчета. Законы динамики материальной					
точки и системы материальных точек.	1	1	2	3	
Внешние и внутренние силы. Центр	-	-			
масс механической системы и закон его					
движения. Закон сохранения импульса					
как фундаментальный закон природы и					
связь с однородностью пространства.					

Энергия как универсальная мера всех				
форм движения и взаимодействия. Ки-				
нетическая энергия механической си-				
стемы. Консервативные и неконсерва-				
тивные системы. Поле центральных сил.				
Потенциальная энергия системы. Закон				
сохранения механической энергии и				
связь с однородностью времени. Приме-				
нение законов сохранения к столкнове-				
_				
нию упругих и неупругих тел.				
3. Элементы вращательно движения.				
Угловая скорость и угловое ускорение,				
связь с линейными скоростями и уско-				
рениями точек вращающегося тела. Мо-				
мент силы и момент импульса относи-				
тельно неподвижной оси вращения.				
Момент инерции тела относительно оси.				
Уравнение динамики вращательного				
движения твердого тела относительно				
неподвижной оси. Кинетическая энергия	_	_	_	3
вращающегося тела. Закон сохранения				
момента импульса и его связь с изо-				
тропностью пространства.				
Элементы механики сплошных сред.				
Общие свойства жидкостей и газов.				
Идеальная и вязкая жидкость. Стацио-				
нарное движение идеальной жидкости.				
Уравнение Бернулли. Упругие напряже-				
ния. Закон Гука.				
4. Основы молекулярной физики и тер-				
модинамики. Термодинамические пара-				
-				
метры. Уравнение МКТ идеальных газов		1		2
и его сравнение с уравнением Менделе-	_	1	_	3
ева Клапейрона. Молекулярно-				
кинетическое толкование термодинами-				
ческой температуры.				
5. Основы термодинамики. Внутренняя				
энергия идеального газа. Работа, со-				
вершаемая идеальным газом. Количе-				
ство теплоты. Теплоемкость. Первое				
начало термодинамики. Применение				
первого начала термодинамики к изо-				
процессам и адиабатическому процессу				
идеального газа. Зависимости теплоем-	1	1		3
кости идеального газа от вида процесса.	1	1	_	S
Обратимые и необратимые тепловые				
процессы. Круговой процесс (цикл).				
Тепловые двигатели и холодильные ма-				
шины. Цикл Карно и его КПД для иде-				
ального газа. Второе начало термодина-				
мики. Независимость КПД цикла Карно				
от природы рабочего тела. Энтропия как				
от природы расс тего тела. Эптропия как				

	T			1
функция состояния. Энтропия идеально-				
го газа. Принцип возрастания энтропии.				
Формула Больцмана				
Реальные газы. Отступления от законов				
идеальных газов. Уравнение Ван-дер-				
Ваальса. Сравнение изотерм Ван-дер-				
Ваальса с экспериментальными.				
6. Механические колебания и волны в				
упругих средах. Гармонические механи-				
ческие колебания. гармонический ос-				
циллятор. Пружинный, физический и				
математический маятники. Энергия гар-				
монических колебаний. Сложение гар-				
монических уравнения одного направ-				
ления и одинаковой частоты. Биения.				
Сложение взаимноперпендикулярных				
колебаний. Дифференциальное уравне-				
ние затухающих и вынужденных коле-				
баний и их решения. Коэффициент зату-				
хания, логарифмический декремент,	1	1	_	3
добротность.	_			
Волновые процессы. Механизм образо-				
вания механических волн в упругой				
среде. Продольные и поперечные волны.				
Синусоидальные (гармонические вол-				
ны). Уравнение бегущей волны. Длина				
волны и волновое число. Волновое				
уравнение. Фазовая скорость и диспер-				
сия волн. Энергия волны. Волновой па-				
кет. Групповая скорость. Когерентность.				
Интерференция волн. Образование сто-				
ячих волн. Уравнение стоячей волны и				
его анализ.				
7. Электростатика. Закон сохранения				
электрического заряда. Электрическое				
поле. Основные характеристики элек-				
трического поля. Расчет электростати-				
ческих полей методом суперпозиции.				
Поток вектора напряженности (электри-				
ческого смещения). Теорема Остроград-				
ского-Гаусса для электростатического				
поля в вакууме. Проводники в электри-				
ческом поле. Типы диэлектриков. Элек-	1	_	_	3
тронная и ориентационная поляризация.				
Диэлектрическая восприимчивость ве-				
щества. Диэлектрическая проницае-				
мость среды. Емкость конденсаторов				
различной геометрической конфигура-				
ции. Объемная плотность энергии элек-				
тростатического поля. Конденсаторы.				
Вывод формулы емкости плоского кон-				
± ± •				
денсатора. Емкость конденсаторов раз-				

				1
личной геометрической конфигурации.				
Соединение конденсаторов. Энергия				
электрического поля. Плотность энергии				
электрического поля. Энергия взаимо-				
действия точечных зарядов. Энергия за-				
ряженных проводников.				
8. Постоянный электрический ток, его				
характеристики и условия существова-				
ния. Разность потенциалов, электродви-				
жущая сила, напряжение. Сторонние				
силы. ЭДС гальванического элемента.				
Закон Ома для участка цепи с гальвани-				
ческим элементом. Классическая элек-				
тронная теория электропроводности ме-				
таллов и ее опытные обоснования. Пра-	1	_	_	3
вила Кирхгофа. Работа тока. Закон Джо-	1			
уля-Ленца. Электрический ток в метал-				
лах.				
Электрический ток в электролитах.				
Электрические разряды в газах. Закон				
Ома Джоуля - Ленца в дифференциаль-				
ной форме из электронных представле-				
ний Закон Ома и Джоуля-Ленца в инте-				
гральной форме.				
9. Магнитное поле. Магнитная индук-				
ция. Действие магнитного поля на ток.				
Закон Ампера. Единица силы тока —				
ампер и ее определение. Магнитное паж				
тока. Закон Био - Савара - Лапласа и его				
_				
применение к расчету магнитного поля.				
Вихревой характер магнитного поля.				
Закон полного тока (циркуляция вектора				
магнитной индукции) для магнитного				
поля в вакууме и его применение к рас-				
чету магнитного поля тороида и длин-				
ного соленоида. Действие магнитного				
поля на движущийся заряд. Сила Ло-				
ренца. Движение заряженных частиц в	1	1	_	3
магнитном иоле. Контур с током в маг-	1	_		
нитном поле. Магнитный поток. Работа				
перемещения проводника и контура с				
током в магнитном поле.				
Явление электромагнитной индукции				
(опыты Фарадея). Правило Ленца. Закон				
электромагнитной индукции. Явление				
самоиндукции. Индуктивность, Энергия				
системы проводников с током. Объем-				
ная плотность энергии магнитного поля.				
Магнитное поле в веществе. Типы маг-				
нетиков. Намагниченность. Элементар-				
ная теория диа- и парамагнетизма. Маг-				
нитная восприимчивость вещества и ее				
питная восприимчивость вещества и ее				

		т	1	,
зависимость от температуры. Закон				
полного тока для магнитного поля в ве-				
ществе. Напряженность магнитного по-				
ля. Магнитная проницаемость среды.				
Ферромагнетики. Магнитный гистере-				
зис. Точка Кюри. Домены.				
10. Электромагнитные колебания и вол-				
ны. Гармонические электромагнитные				
колебания и их характеристики Диффе-				
ренциальное уравнение электромагнит-				
ных колебаний. Электрически колеба-				
тельный контур. Энергия электромаг-				
нитных колебаний. Плоские электро-				
магнитные волны. Дифференциальное	1	_	_	3
уравнение плоской электромагнитной				
волны. Основные свойства электромаг-				
нитных волн. Плоска монохроматиче-				
ская волна. Энергия электромагнитных				
волн. Поток энергия Вектор Умова-				
Пойтинга. Световая волна. Интенсив-				
ность света.				
11. Волновая оптика				
Интерференция света. Когерентность и				
монохроматичность световых волн. Ин-				
терферометры. Дифракция света. Метод				
зон Френеля. Разрешающая способность				
оптических приборов. Дифракция на	1	_	_	3
пространственной решетке. Формула				
Вульфа-Брэгга. Исследование структуры				
кристаллов. Принцип голографии. При-				
менение голографии.				
12. Дисперсия света. Области нормаль-				
ной и аномальной дисперсии. Поглоще-				
ние света. Поляризация света. Поляри-				
зация света при отражении. Двойное лу-		_	_	3
чепреломление. Одноосные кристаллы.				3
Поляроиды и поляризационные призмы.				
Закон Малюса. Электрооптические и				
магнитооптические явления.				
13. Квантовая природа света. Законы				
внутреннего и внешнего эффекта. Теп-	1			
ловое излучение света. Законы Кирхго-	1	_	_	3
фа, Вина. Спектральный анализ.				
14. Основы квантовой механики. Энер-				
гетические уровни атома. Теория Бора.				
Гипотеза де Бройля. Соотношение не-				
определенностей Гейзенберга. Волновая	_	_	_	3
функция и ее статистический смысл.	_	_	_	
Уравнение Шредингера для стационар-				
уравнение птредингера для стационар-				
15. Квантовая и атомная физика	_	_	_	3
Физика атома и атомного ядра. Модели				

атома. Состав атомного ядра. Нуклоны. Дефект масс. Энергия связи. Ядерные силы.				
ИТОГО	10	6	4	80

Аттестация студентов, обучающихся по традиционной заочной форме обучения, производится один раз до экзамена во время сессии.

Список основной литературы

- 1. Трофимова Т.Н. Курс физики. Москва: Высшая математика, 2003.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Москва: Высшая школа, 1989.
 - 3. Савельев И.В. Курс общей физики, т. 1-3.- Москва: Наука, 1989.
 - 4. Тулькиева Л.Е. Физика. 4.1 Алматы: КазГАСА, 2002.
- 5. Камышева А.Т. Методические указания к выполнению лабораторных работ (механика). -Алматы: КазГАСА, 1998.

Тематика контрольных работ

Контрольная работа, выполняемая студентами факультета заочной формы обучения по дисциплине «Физика» включает в себя 10 задач по всем основным разделам данной дисциплины: механика; молекулярная физика и термодинамика; электричество.

Варианты заданий для выполнения контрольных работ

Контрольная работа выдается студентам в электронном виде (Задачник по физике). В выдаваемом задачнике имеются: содержание контрольной работы; правила выбора варианта; примеры решения и оформления задач; справочная информация; контактная информация для связи с преподавателем.

Правила кодирования вариантов заданий для контрольных работ и курсовых проектов (работ) и рекомендации для студентов по их выбору

ВАРИАНТ контрольной работы определяется двумя последними цифрами зачётной книжки студента.