Министерство образования и науки Республики Казахстан

Карагандинский государственный технический университет

	гверждаю»	
Пр	едседатель Уч	неного совета,
Рек	тор КарГТУ	Газалиев А.М.
«	<u></u> »	_ 2014 г.

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина Fiz(II) 2213 «Физика II»

Модуль FN3 Фундаментальные науки

Специальность 5В072400 «Технологические машины и оборудование (по отраслям)»

Машиностроительный факультет

Кафедра физики

Предисловие

Программа обучения по дисциплине для студента (syllabus) разработана: к.х.н., ст.преподавателем Кусеновой А.С., к.ф.-м.н., ст.преподавателем Салькеевой А.К.

Обсуждена на заседании кафе,	дры физики			
Протокол № от «»	2014 г.			
Зав. кафедройСмі	ирнов Ю.М.	«»	2014 г.	
Одобрено методическим телекоммуникаций, (ФЭАТ) Протокол № от «»_		_	тики, автоматики	И
Председатель	Тенчурина А.Р.	«»	2014 г.	
Согласовано с кафедрой «ГМ	и O»			
Зав. кафедрой	_Жолдыбаева Г.С.	«»	2014Γ.	

Сведения о преподавателе и контактная информация

Кусенова Асия Сабиргалиевна, к.х.н., старший преподаватель кафедры физики, Салькеева Айжан Каришовна, к.ф.-м.н., старший преподаватель кафедры физики.

Кафедра физики находится в 1 корпусе КарГТУ (г. Караганда, Бульвар Мира, 56), аудитория 408, контактный телефон 565931, доб. 2027, факс: 87212565234. Электронная почта: IVC@KSTU.KZ.

Трудоемкость дисциплины

	0B		Вид занятий					Коли	Обще	
ф			ко	личество кон	тактных	модиноо		чест	e	Фор
ec.	кредит	PI		часов		количес	Daara	во	коли	ма
Семестр	кр	Кредиты ESTS		практичес	лаборатор	TBO	всего	часо	честв	конт
\circ	Кол.	ред STS	лек	кие	ные	часов СРСП	часов	В	O	роля
	K	A 33	ции	занятия	занятия	CPCII		CPC	часов	
3	3	5	15	15	15	45	90	45	135	Экз.

Характеристика дисциплины

Дисциплина «Физика II» входит в цикл базовых дисциплин (обязательный ІІкомпонент) является основой развития производства, и те физические явления и процессы, которые еще не применяются в технике, в будущем могут оказаться полезными инженеру.

Дисциплина «Физика II» совместно с курсами высшей математики и теоретической механики составляет основу теоретической подготовки бакалавров и играет роль фундаментальной базы инженерно-технической деятельности выпускников высшей технической школы любого профиля.

Цель дисциплины

Дисциплина «Физика II» ставит целью формирование знаний и усвоение физических явлений и законов современной физики.

Задачи дисциплины

Задачи дисциплины следующие:

- -создание у бакалавров основ достаточно широкой теоретической подготовки в области физики, позволяющей будущим инженерам ориентироваться в потоке научной и технической информации и обеспечивающей им возможность применения новых физических принципов в тех областях техники, в которых они специализируются;
- -формирование у бакалавров научного мышления, в частности, правильного понимания границ применимости различных физических понятий, законов, теорий и умение оценивать степень достоверности результатов, полученных с помощью экспериментальных или теоретических методов исследования;
- -формирование у бакалавров приемов и навыков решения конкретных задач из разных областей физики, помогающих им в дальнейшем решать технические задачи;
- -способствовать развитию у студентов творческого мышления, навыков самостоятельной познавательной деятельности;
- ознакомить студентов с современной измерительной аппаратурой, выработать начальные навыки проведения экспериментальных и научных исследований различных физических явлений и оценки погрешностей измерений.

В результате изучения данной дисциплины студенты должны: иметь представление :

- о границах применимости различных физических понятий, явлений, законов и теорий;

знать:

- основные физические явления и законы классической и современной физики; уметь:
- использовать современные физические явления и законы классической и современной физики;

приобрести практические навыки:

решения конкретных задач физики и проведения физического эксперимента; быть компетентным в различных вопросах по данной дисциплине.

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих дисциплин:

Mat (I) 1210 Математика I

Mat (II) 1211 Математика II

Ніт 1214 Химия

Fiz (I) 1212 Физика I

Постреквизиты

Знания, полученные при изучении дисциплины «Физика II», используются при освоении следующих дисциплин:

Ele 2211 Электротехника.

SSTI 3215 Стандартизация, сертификация и технические измерения.

Тематический план дисциплины

	Труд	оемкостн	5 по вида ч.	м заня	гий,
Наименование раздела, (темы)	лекц ии	практ ическ ие	лабор аторн ые	С Р С П	C P C
Введение	1	1	1	3	3
Физика как наука о простейших формах движения материи и соответствующих им наиболее общих законах природы. Важнейшие этапы развития физики — от механики И. Ньютона к теории электромагнитного поля Дж. К. Максвелла и рождению квантовых представлений, созданию теории относительности и квантовой механики ,ставших теоретической базой атомной, ядерной физики и других разделов современной физики. Методы физического исследования: опыт, гипотеза					
эксперимент, теория. Роль физики в создании и развитии новых отраслей техни-ки и новых технологий. Влияние техники на развитие физики. Физика и другие науки. Физическое моделирование. Общая					
структура и задачи курса физики.					
Раздел 1 Оптика					
1. Волновое уравнение для электромагнитного поля.					
Понятие о лучевой (геометрической) оптике.					
Свойства электромагнитных волн. Плотность потока					
электромагнитной энергии. Вектор Умова-Пойнтинга.					
Излучение диполя. Законы отражения и преломления.					
Явление полного отражения. Фотометрия.					
Практическое занятие: Электромагнитные волны					
Лабораторная работа №80					
2. Свойства световых волн.	1	1	2	3	3
Волновой пакет. Групповая скорость. Интерференция					
световых волн. Когерентность. Интерферометры.					
Практическое занятие: Геометрическая оптика.					
Фотометрия.					
Лабораторная работа №66 3. Дифракция волн.	1	1	2	3	3
5. дифракция волн. Принцип Гюйгенса-Френеля. Метод зон Френеля.	1	1	2	3	3
Дифракция Френеля. Дифракция Фраунгофера.					
Дифракция на одной и на многих щелях.					
Спектральное разложение. Голография.					
Практическое занятие: Интерференция волн.					
Лабораторная работа №72					
4. Электромагнитные волны в веществе.	1	1		3	3
Распространение света в веществе. Давление света.					
Дисперсия света. Поглощение света. Поляризация					
света. Способы получения поляризованного света.					
Практическое занятие: Дифракция волн.			_	_	
Раздел 2 Квантовая физика	1	1	2	3	3
5. Тепловое излучение.					

	1	I	1		
Проблемы излучения абсолютно черного тела.					
Квантовая гипотеза и формула Планка. Фотоны.					
Энергия и импульс световых квантов.					
Практическое занятие: Поляризация света. Дисперсия					
света и распространение света в веществе. Закон					
Бугера и поглощение света.					
Лабораторная работа №102					
6. Экспериментальное обоснование основных идей	1	1	2	3	3
квантовой теории.					
Фотоэффект. Рентгеновское излучение. Эффект					
Комптона. Линейчатые спектры атомов. Постулаты					
Бора.					
Практическое занятие: Квантовая физика. Тепловое					
излучение. Энергия и импульс фотонов.					
Лабораторная работа №64					
7. Корпускулярно-волновой дуализм.	1	1		3	3
Гипотеза де Бройля. Дифракция электронов.					
Соотношение неопределенностей. Волновые свойства					
микрочастиц и соотношение неопределенностей.					
Принцип соответствия. Статистический смысл					
волновой функции					
Практическое занятие: Фотоэффект. Эффект					
Комптона.					
8. Временное и стационарное уравнения Шредингера.	1	1		3	3
Частица в одномерной прямоугольной яме.					
Прохождение частицы через потенциальный барьер.					
Практическое занятие: Корпускулярно-волновой					
дуализм. Волны де Бройля. Соотношение					
неопределенностей.					
9. Атом и молекула водорода в квантовой теории.	1	1	2	3	3
Уравнение Шредингера для атома водорода.					
Водородоподобные атомы. Энергетические уровни.					
Ширина уровней. Пространственное квантование.					
Квантовые числа. Принцип Паули. Атом и молекула					
водорода в квантовой механике.					
Практическое занятие: Атом и молекула водорода в					
квантовой теории. Сериальные закономерности.					
Лабораторная работа №68					
10. Элементы квантовой электроники.	1	1	2	3	3
Спонтанное и вынужденное излучение. Лазеры.					
Практическое занятие: Лазеры					
Лабораторная работа №34					
11. Элементы квантовой статистики.	1	1		3	3
Фазовое пространство. Элементарная ячейка. Понятие					
о квантовых статистиках Бозе-Эйнштейна и Ферми-					
Дирака. Квазичастицы. Их определения и виды.					
Практическое занятие: Рентгеновское излучение.					
Формула Мозли.					
12. Конденсированное состояние.	1	1		3	3
Элементы структурной кристаллографии. Методы					
исследования кристаллических структур.					
Теплоёмкость кристаллической решётки. Фононный					

газ. Электропроводность металлов. Носители тока как квазичастицы. Энергетические зоны в кристаллах. Низкоразмерные системы. Уровень Ферми. Поверхность Ферми. Практическое занятие: Конденсированное состояние					
13. Конденсированное состояние. Металлы, диэлектрики и полупроводники в зонной теории. Понятия электронной и дырочной проводимости. Собственная и примесная проводимости. Явление сверхпроводимости. Квантовые представления о свойствах ферромагнетиков. Намагничивание ферромагнетиков. Обменное взаимодействие. Температура Кюри. Практическое занятие: Физика твердого тела. Элементы зонной теории. Тепловые, электрические и магнитные свойства твердых тел. Практическое занятие: Физика твердого тела. Элементы зонной теории. Тепловые, электрические и магнитные свойства твердых тел. Лабораторная работа №3.3	1	1	2	3	3
Раздел 3 Атомное ядро и элементарные частицы 14. Атомное ядро. Строение атомных ядер. Ядерные силы. Обмен- ный характер ядерных сил. Закономерности альфа-, бета- и гамма-излучения. Ядерные реакции. Радиоактивные превращения атомных ядер. Реакции ядерного деления. Цепная реакция деления. Ядерный реактор. Реакция синтеза. Проблема источников энергии. Практическое занятие: Атомное ядро	1	1		3	3
15. Элементарные частицы. Сильное, электромагнитное, слабое, гравитаци- онное взаимодействия. Лептоны, адроны, кварки. Понятие об основных проблемах современной физики и астрофизики. Практическое занятие: Классификация элементарных частиц	1	1		3	3
ИТОГО:	15	15	15	45	45

Перечень практических занятий

- Тема 1. Электромагнитные волны.
- Тема 2. Геометрическая оптика. Фотометрия
- Тема 3. Интерференция волн.
- Тема 4. Дифракция волн.
- Тема 5. Поляризация света. Дисперсия и распрострпнение света в веществе. Закон Бугера и поглощение света
- Тема 6. Квантовая физика. Тепловое излучение. Энергия и импульс фотонов.
- Тема 7. Фотоэффект. Фотоны. Эффект Комптона.
- Тема 8. Корпускулярно- волновой дуализм. Волны де Бройля. Соотношение неопределённостей Гейзенберга
- Тема 9. Атом и молекула водорода в квантовой теории. Сериальные закономерности.
- Тема 10. Рентгеновское излучение. Формула Мозли.

Тема 11. Лазеры

Тема 12. Конденсированное состояние.

Тема 13 Физика твердого тела. Элементы зонной теории. Тепловые, электрические и магнитные свойства твердых тел.

Тема 14. Атомное ядро.

Тема 15. Классификация элементарных частиц.

Перечень лабораторных занятий

1. Лабораторная работа № 80

Определение показателя преломления материалов.

2. Лабораторная работа № 66

Изучение интерференции с помощью лазера

3. Лабораторная работа № 72

Изучение явления дифракции света

4. Лабораторная работа № 102

Определение постоянной Стефана-Больцмана

5. Лабораторная работа № 64

Изучение внешнего фотоэффекта

6. Лабораторная работа № 68

Изучение спектров излучения и поглощения света

7. Лабораторная работа № 3.4

Изучение устройства и принципа работы лазеров.

8. Лабораторная работа № 3.3

Темы контрольных заданий для СРС

Тема 1 Волновое уравнение для электромагнитного поля. Понятие о лучевой (геометрической) оптике

- 1. Волновое уравнение для электромагнитного поля.
- 2. Плотность потока электромагнитной энергии. Вектор Умова-Пойнтинга. Излучение диполя
- 3. Закон прямолинейного распространения света.
- 4. Задачи №№ 4.158; [6], 4.1,14.5,14.12 [8]
- 5. Вопросы № 1-29 [2].

Тема 2 Интерференция волн

- 1. Волновой пакет. Групповая скорость.
- 2. Полосы равного наклона и равной толщины
- 3. Кольца Ньютона
- 4. Просветление оптики
- 5. Задачи №№ 4.158; 4.167; 4.169[6]
- 6. Вопросы № 59-87 [2].

Тема 3. Дифракция волн.

- 1. По какому принципу происходит разбиение волнового фронта на зоны Френеля?
- 2. Дифракция на пространственной решетке.
- 3. Разрешающая способность спектрального прибора.
- 4. Спектральное разложение. Голография.
- 5. Задачи № 16.30; 16.38; 16.42 [7].
- 6. Вопросы № 88-116 и № 117-142 [2].

Тема 4 . Электромагнитные волны в веществе

- 1. Давление света.
- 2. Поляризационные призмы и поляроиды.
- 3. Искусственная оптическая анизотропия.

- 4. Виды спектров поглощения.
 - 8. Задачи №№ 5.157; 5.159; 5.162 [6].
 - 9. Вопросы № 88-116 [2].

Тема 5. Тепловое излучение

- 1. Виды оптических излучений.
- 2. Фотоны. Энергия и импульс световых квантов.
- 3. Оптическая пирометрия.
- 4. Задачи № 18.2; 18.13; 18.11. [7].
- 5. Вопросы № 117-145 [2].

Тема 6. Экспериментальное обоснование основных идей квантовой теории

- 1. Единство корпускулярных и волновых свойств света.
- 2. Модели Томсона и Резерфорда.
- 3. Линейчатый спектр атома водорода
- 4. Опыты Франка и Герца.
- 5. Задачи № № 5.178; 5.181; 5.192;5.194, 5.195. [6].

Тема 7. Корпускулярно-волновой дуализм

- 1. Свойства волн де Бройля. Волновые свойства микрочастиц.
- 2. Следствия соотношений неопределенностей
- 3. Границы применимости квантовой механики
- 4. Принципиальные отличия принципа суперпозиции классической и квантовой механики. Принцип соответствия.
- 1. Задачи №6.52; 6.63; 6.67 [6].

Тема 8. Временное и стационарное уравнение Шредингера.

- 1. Преодоление потенциального барьера в классической и квантовой механике: принципиальные отличия.
 - 2. Линейный гармонический осциллятор.
 - 3. Туннельный эффект
 - 4. Задачи №№ 6.104; 6. 106 [6].

Тема 9. Атом и молекула водорода в квантовой теории

- 1. Водородоподобные атомы. Энергетические уровни. Ширина уровней
- 2. Правила отбора
- 3.Спин электрона
- 4. Распределение электронов в атоме по состояниям
- 7. Задачи №№ 6.155; 6.156; 6.161 [6].].
- 6. Вопросы № 291-319 [2].

Тема 10. Элементы квантовой электроники

- 1. Устройство и принцип работы лазеров
- 2. Технические применения лазеров
- 3. Задачи №№ 6.104; 6. 106 [8]..
- 4. Вопросы № 291-348 [2].

Тема 11. Элементы квантовой статистики

- 1. Математическая запись принципа неразличимости тождественных частиц.
- 2. Симметричные и антисимметричные волновые функции.
- 3. Чем определяется симметрия волновых функций?

Квазичастицы

- 4. Задачи №№ 6.155; 6.156[8].
- 5. Вопросы № 291-348 [2].

Тема 12. Конденсированное состояние

- 1. Низкоразмерные системы.
- 2. Элементы структурной кристаллографии. Методы исследования кристаллических структур

- 3. Поверхность Ферми.
- 4. Задачи №6.161 [8]..
- 5. Вопросы № 397-425 [2].

Тема 13. Конденсированное состояние (продолжение).

- 1. Приближение самосогласованного поля.
- 2. Явление сверхпроводимости.
- 3. Квантовые представления о свойствах ферромагнетиков. Обменное взаимодействие.
- 4. Намагничивание ферромагнетиков. Температура Кюри.
- 4. Задачи №№ 6.196; 6.198 [6].
- 6. Вопросы № 426-483 [2].

Тема 14. Атомное ядро

- 1. Обменный характер ядерных сил.
- 2. Цепная реакция деления.
- 3. Ядерный реактор.
- 4. Реакция синтеза.
- 5. Проблема источников энергии.
- 6. Задачи №№ 7.50; 7.58; 7.67; 7.76; 7.87 [6].
- 7. Вопросы № 426-483 [2].

Тема 15. Элементарные частицы

- 1. Классификация элементарных частиц. Кварки.
- 2.Понятие об основных проблемах современной физики и астрофизики.
- 3. Задача № 10.81 [1].
- 4. Вопросы №№ 7.97; 7.119; 7.123 [6].

Критерии оценки знаний студентов

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100%.

График выполнения и сдачи заданий по дисциплине

Вид контроля	Цель и содержание задания	Рекомендуема я литература	Продолж ительнос ть выполне ния	Форма контрол я	Срок сдачи	Балл
СРС	Углубить знания по изучаемым темам	Весь перечень основной и до полнительной литературы	Ежене- дельно	Теку- щий	Ежене-	2
Защита	Углубить знания по	F1 2 4 101	1-7	Теку-	2, 3, 4,7	
лабораторны х работ 80, 66, 72, 102	теме «Геометрическая и волновая оптика Квантовая физика»	[1,3,4,10], [1,3,7,13]	недели	щий	недели	20
Решение задач на практически х занятиях	Углубить знания по теме: «Волновое уравнение для электромагнитного поля. Геометрическая и волновая оптика. Квантовая физика»	[3,6,7,8,9], [3,4,5,6]	1-7 недели	Теку- щий	1-7 недели	2

Письмен-	Проверка знаний по		7 неделя	Рубежн	7	
ный опрос	теме:«Геометрическая	[1,2,3,4,5],		ый	неделя	
№ 1	и волновая оптика.	[1,2,3,5]				7
	Квантовая физика»					
Защита ла	Углубить знания по	[1,3,4,10],	8-10	Теку-	8,10	
бораторных	теме: «Квантовая	[1,3,7,8,13]	недели	щий	недели	
работ 64, 68,	физика»	[1,3,7,6,13]				10
Решение	Углубить знания по		8-13	Теку-	9	
задач на	теме «Квантовая	[3,6,7,8,9],	недели	щий	неделя	
практически	физика»	[3,4,5,6]				1.5
х занятиях						
Защита	Углубить знания по		11-14	Теку-	11,14	
лаборатор	теме «Лазеры.	[1,3,4,11],	неделя	щий	неделя	
ных работ	Конденсированное	[1,3,7,8,13]				10
3.3, 3.4	состояние».					
Решение	Углубить знания по		14-15	Теку-	14-15	
задач на	теме «Атомное ядро и	[3,6,7,8,9],		щий		
практически	элементар ные	[3,4,5,6]				0.5
х занятиях	частицы».					
Письмен-	Проверка знаний по		14	Рубежн	14	
ный опрос	теме: «Кванто вая	[1 2 2 4 5]	неделя	ый	неделя	
№ 2	физика. Атомное ядро	[1,2,3,4,5], [1,2,3,8,9]				7
	и элементарные	[1,2,3,6,9]				
	частицы».					
Экзамен	Проверка усвоения	Весь перечень	2	Итого-	В	40
	материала	основной и до	контакт-	вый	период	
	дисциплины	полнительной	ных часа		сессии	
		литературы				
Итого						100

Политика и процедуры

При изучении дисциплины «Физика 2» прошу соблюдать следующие правила:

- 1. Не опаздывать на занятия.
- 2. Не пропускать занятия без уважительной причины, в случае болезни прошу представить справку, в других случаях объяснительную записку.
 - 3. В обязанности студента входит посещение всех видов занятий.
 - 4. Согласно календарному графику учебного процесса сдавать все виды контроля.
- 5. Пропущенные практические занятия отрабатывать в указанное преподавателем время.
 - 6. Активно участвовать в учебном процессе.
- 7. Быть терпимыми, открытыми, откровенными и доброжелательными к сокурсникам и преподавателям.

Список основной литературы

- 1. Савельев И.В. Курс общей физики. В 5 кн. M. 2001 г.
- 2. Савельев И.В. Курс физики в 3-х томах. М. 1982-1989 г.
- 3. Трофимова Т.И. Курс физики. М. 2004 г.
- 4. Детлаф А.А., Яворский Б.М. Курс физики. М. 1999 г.
- 5. Сивухин Д.В. Общий курс физики в 5-и томах. М. 1977-1986 г.

- 6. Трофимова Т.И. Сборник задач по курсу физики для втузов. М. 2003.
- 7. Волькенштейн В.С. Сборник задач по общему курсу физики. С.-П. 2007.
- 8. Волькенштейн В.С. Сборник задач по общему курсу физики. М. 1988.
- 9. Чертов А., Воробьев А. Задачник по физике. М. 1988 г.
- 10. Иродов И.Е. Задачи по общей физике. М.: Бином. Лаборатория знаний, 2007. 416 с.
- 11. Ясинский В.Б. Лабораторный физический практикум: волновая и квантовая оптика, физика атома и ядра. Учебное пособие. Караганда: Изд-во КарГТУ, 2002 г, 90 с.

Список дополнительной литературы

- 1. Трофимова Т.И. Краткий курс физики. M.: Высш.шк., 2004. 352 с.
- 2. Савельев И.В. Сборник вопросов и задач по общей физике. М.: АСТ, 2004. 472 с.
- 3. Лабораторный практикум по физике. Под ред. Барсукова К.А., Уханова Ю.И. М.: Высш.шк., 1988. 351 с.
- 4. Грабовский Р.И. Курс физики. СПб., М., Краснодар: Лань, 2004. 607 с.
- 5. Лозовский В.Н. Курс физики в 2-х томах. СПб., М., Краснодар: Лань, 2007. 2 т.
- 6. Матвеев, А. Н. Электричество и магнетизм: учебное пособие для физических специальностей вузов. М.: Высшая школа, 1983. 463 с.
- 7. Матвеев, А. Н. Атомная физика: М.: Высшая школа, 1989. 440 с.
- 8. Иродов, И. Е. Квантовая физика. Основные законы. 3-е изд. стер. М. : Бином. Лаборатория знаний, 2007. 256 с. : ил.
- 9. Федосеев, В. Б. Физика: учебник для студентов технических вузов. Ростов H/Д: ФЕНИКС, 2009. 669 с.
- 10. Ясинский В.Б., Кузнецова Ю.А..Методические указания к лабораторным работам по дисциплине "ФИЗИКА": 3.3. Исследование температурной зависимости сопротивления металлов и полупроводников. 3.4. Изучение колебательного контура, резонанс. Караганда: Изд-во КарГТУ, 2006., 30 с.
- 11. Ясинский В.Б. Методические указания к лабораторным работам по дисциплине "ФИЗИКА": 4.3. Изучение дифракции света 4.4. Изучение законов интерференции. Караганда: Изд-во КарГТУ, 2006. 35 с.
- 13. Ясинский В.Б., Кузнецова Ю.А Методические указания к лабораторным работам по дисциплине "ФИЗИКА": 4.6. Изучение поляризации света. Законы Брюстера и Малюса, 4.8. Определение постоянной Планка с помощью внешнего фотоэффекта, 4.9. Изучение внутреннего фотоэффекта. Караганда: Изд-во КарГТУ, 2006. 39

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)
но дисциплине дисциплина Fiz(II) 2214 «Физика 2»

Модуль FM3 Физико-математический

Гос. изд. лип. № 50 от 31.03.2004.
Подписано к печати_____ 2014 г. Формах 90х60/16. Тираж ____экз.
Объем _ уч. изд. л. Заказ № _____Цена договорная

100027. Издательство КарГТУ, Караганда, Бульвар Мира, 56