Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина Fiz(II) 2206 «Физика II»

Модуль Fiz(II) 17 «Физика II»

Специальность 5В070700 «Горное дело»

Горный институт

Кафедра физики

Предисловие

Программа обучения по дисциплине для студента (syllabus) разработана: к.х.н., ст.преподавателем Кусеновой А.С., к.ф.-м.н., ст.преподавателем Салькеевой А.К.

Обсуждена на заседании кафе	дры физики		
Протокол № <u>18</u> от « <u>06</u> »	<u>05</u>	_2013 г.	
Зав. кафедрой	Смирнов Ю.М.	«»	2013 г.
	автоматики (ИТ	θA)	никаций, энергетики
Протокол $N_2 9$ от «_16>	<u>05</u>	_2013 г.	
Председатель	Тенчурина А	.P. «	»2013 г.
Согласована с кафедрой РМГ Зав.кафедрой		<u> </u>	»2013 г.
Согласована с кафедрой МД з		К «	» 2013 г

Сведения о преподавателе и контактная информация

Кусенова Асия Сабиргалиевна, к.х.н., старший преподаватель кафедры физики, Салькеева Айжан Каришовна, к.ф.-м.н., старший преподаватель кафедры физики.

Кафедра физики находится в 1 корпусе КарГТУ (г. Караганда, Бульвар Мира, 56), аудитория 408, контактный телефон 565931, доб. 2027, факс: 87212565234. Электронная почта: IVC@KSTU.KZ.

Трудоемкость дисциплины

	ЭВ				Коли	Обще				
<u>d</u>			ко	личество кон	ітактных	колицоо		чест	e	Фор
ec.	кредил	19		часов		DAGEO	во	коли	ма	
Семестр	кр	едиты ГЅ	практичес лаборатор	практичес лаборатор насов нас	всего	часо	честв	конт		
	ОЛ.	ред STS	лек	кие	ные	часов СРСП	часов	В	O	роля
	K	A S S	ции	занятия	занятия	CPCII		CPC	часов	
3	3	5	15	15	15	45	90	45	135	Экз.

Характеристика дисциплины

Дисциплина «Физика II» является основой развития производства, и те физические явления и процессы, которые еще не применяются в технике, в будущем могут оказаться полезными инженеру.

Дисциплина «Физика II» совместно с курсами высшей математики и теоретической механики составляет основу теоретической подготовки бакалавров и играет роль фундаментальной базы инженерно-технической деятельности выпускников высшей технической школы любого профиля.

Цель дисциплины

Целью изучения дисциплины «Физика II» является формирование знаний и усвоение физических явлений и законов современной физики.

Задачи дисциплины

Задачи дисциплины следующие:

- создание у бакалавров основ достаточно широкой теоретической подготовки В области физики, позволяющей будущим инженерам ориентироваться В потоке научной И технической информации обеспечивающей им возможность применения новых физических принципов в тех областях техники, в которых они специализируются;
- -формирование у бакалавров научного мышления, в частности, правильного понимания границ применимости различных физических понятий, законов, теорий и умение оценивать степень достоверности результатов, полученных с помощью экспериментальных или теоретических методов исследования;
- -формирование у бакалавров приемов и навыков решения конкретных задач из разных областей физики, помогающих им в дальнейшем решать технические задачи;

-способствовать развитию у студентов творческого мышления, навыков самостоятельной познавательной деятельности;

- ознакомить студентов с современной измерительной аппаратурой, выработать начальные навыки проведения экспериментальных и научных исследований различных физических явлений и оценки погрешностей измерений.

В результате изучения данной дисциплины студент должн:

иметь представление:

- о границах применимости различных физических понятий, явлений, законов и теорий;

знать:

- основные физические явления и законы классической и современной физики;

уметь:

- использовать современные физические явления и законы классической и современной физики;

иметь практические навыки:

решения конкретных задач физики и проведения физического эксперимента;

быть компетентным в различных вопросах по данной дисциплине.

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих лисциплин (с указанием разлелов (тем)):

цисциплин (с указа	нием разделов (тем)).
Дисциплина	Наименование разделов (тем)
Математика 1 Математика 2	Векторная алгебра и элементы векторного анализа. Дифференциальное исчисление функций одной и нескольких переменных. Интегральное исчисление функций одной и нескольких переменных. Понятие о роторе, дивергенции, градиенте. Решение обыкновенных дифференциальных уравнений первого и второго порядков.
Химия	Виды химической связи. Таблица Д.И. Менделеева. Основные свойства химических элементов и их главных соединений. Атомы, молекулы, их роль в строении материи.
Физика 1	Механика. Молекулярная физика и термодинамика Электричество и магнетизм

Постреквизиты

Знания, полученные при изучении дисциплины «Физика II», используются при освоении следующих дисциплин:

- 1. Физика горных пород.
- 2. Основы электротехники и электроснабжение на ОГР.
- 3. Маркшейдерское дело.

Тематический план дисциплины

	Труд	оемкості	ь по вида ч.	м заня	гий,
Наименование раздела, (темы)	лекц ии	практ ическ ие	лабор аторн ые	С Р С П	C P C
Введение	1	1	1	3	3
Физика как наука о простейших формах					
движе-ния материи и соответствующих им					
наиболее общих законах природы. Важнейшие					
этапы раз-вития физики – от механики И.					
Ньютона к тео-рии электромагнитного поля					
Дж. К. Максвелла и рождению квантовых					
представлений, созда-нию теории					
относительности и квантовой меха-ники					
,ставших теоретической базой атомной,					
ядерной физики и других разделов					
современной физики. Методы физического					
исследования: опыт, гипотеза, эксперимент,					
теория. Роль физи-ки в создании и развитии					
новых отраслей техни-ки и новых технологий.					
Влияние техники на развитие физики. Физика					
и другие науки. Физи-ческое моделирование.					
Общая структура и зада-чи курса физики.					
Раздел 1 Оптика					
1. Волновое уравнение для электромагнитного					
поля. Понятие о лучевой (геометрической)					
оптике.					
Свойства электромагнитных волн. Плотность					
потока электромагнитной энергии. Вектор					
Умова-Пойнтинга. Излучение диполя. Законы					
отражения и преломления. Явление полного					
отражения. Фотометрия.					
Практическое занятие:Электромагнитные					
волны					
Лабораторная работа №80					
2. Свойства световых волн.	1	1	2	3	3
Волновой пакет. Групповая скорость.					
Интерференция световых волн.					
Когерентность. Интерферометры.					
Практическое занятие: Геометрическая					
оптика. Фотометрия.					
Лабораторная работа №66					

2 п. т	1	1	2	2	2
3. Дифракция волн.	1	1	2	3	3
Принцип Гюйгенса-Френеля. Метод зон					
Френеля. Дифракция Френеля. Дифракция					
Фраунгофера. Дифракция на одной и на многих щелях. Спектральное разложение.					
Голография.					
Практическое занятие: Интерференция волн.					
Пабораторная работа №72					
4. Электромагнитные волны в веществе.	1	1		3	3
Распространение света в веществе. Давление	1	1		3	3
света. Дисперсия света. Поглощение света.					
Поляризация света. Способы получения					
поляризованного света.					
Практическое занятие: Дифракция волн.					
Раздел 2 Квантовая физика	1	1	2.	3	3
5. Тепловое излучение.	1	1			5
Проблемы излучения абсолютно черного тела.					
Квантовая гипотеза и формула Планка.					
Фотоны. Энергия и импульс световых					
квантов.					
Практическое занятие: Поляризация света.					
Дисперсия света и распространение света в					
веществе. Закон Бугера и поглощение света.					
Лабораторная работа №102					
6. Экспериментальное обоснование основных	1	1	2	3	3
идей квантовой теории.					
Фотоэффект. Рентгеновское излучение.					
Эффект Комптона. Линейчатые спектры					
атомов. Постулаты Бора.					
Практическое занятие: Квантовая физика.					
Тепловое излучение. Энергия и импульс					
фотонов.					
Лабораторная работа №64				_	_
7. Корпускулярно-волновой дуализм.	1	1		3	3
Гипотеза де Бройля. Дифракция электронов.					
Соотношение неопределенностей. Волновые					
свойства микрочастиц и соотношение					
неопределенностей. Принцип соответствия.					
Статистический смысл волновой функции					
Практическое занятие: Фотоэффект. Эффект					
Комптона.	1	1		2	2
8. Временное и стационарное уравнения	1	1		3	3
Шредингера.					
Частица в одномерной прямоугольной яме.					
Прохождение частицы через потенциальный					

Sant an					
барьер.					
Практическое занятие: Корпускулярно-					
волновой дуализм. Волны де Бройля.					
Соотношение неопределенностей.	1	1	2	2	2
9. Атом и молекула водорода в квантовой	1	1	2	3	3
теории.					
Уравнение Шредингера для атома водорода.					
Водородоподобные атомы. Энергетические					
уровни. Ширина уровней. Пространственное					
квантование. Квантовые числа. Принцип					
Паули. Атом и молекула водорода в квантовой					
механике.					
Практическое занятие: Атом и молекула					
водорода в квантовой теории. Сериальные					
закономерности.					
Лабораторная работа №68					
10. Элементы квантовой электроники.	1	1	2	3	3
Спонтанное и вынужденное излучение.					
Лазеры.					
Практическое занятие: Лазеры					
Лабораторная работа №34					
11.Элементы квантовой статистики.	1	1		3	3
Фазовое пространство. Элементарная ячейка.					
Понятие о квантовых статистиках Бозе-					
Эйнштейна и Ферми-Дирака. Квазичастицы.					
Их определения и виды.					
Практическое занятие: Рентгеновское					
излучение. Формула Мозли.					
12. Конденсированное состояние.	1	1		3	3
Элементы структурной кристаллографии.					
Методы исследования кристаллических					
структур. Теплоёмкость кристаллической					
решётки. Фононный газ. Электропроводность					
металлов. Носители тока как квазичастицы.					
Энергетические зоны в кристаллах.					
Низкоразмерные системы. Уровень Ферми.					
Поверхность Ферми.					
Практическое занятие: Конденсированное					
состояние					
13. Конденсированное состояние.	1	1	2	3	3
Металлы, диэлектрики и полупроводники в	1	1	_		
зонной теории. Понятия электронной и дыроч-					
чной проводимости. Собственная и примесная					
проводимости. Явление сверхпроводимости.					
Квантовые представления о свойствах фер-					
таптовые представления о своиствах фер-					

ромагнетиков. Намагничивание ферромагнетиков. Обменное взаимодействие. Температура Кюри. Практическое занятие: Физика твердого тела. Элементы зонной теории. Тепловые, электри-					
Температура Кюри. Практическое занятие: Физика твердого тела.					
Практическое занятие: Физика твердого тела.					
-					
Sheweith Somion reophn. Tempoble, Shekiph					
ческие и магнитные свойства твердых тел.					
Практическое занятие: Физика твердого тела.					
Элементы зонной теории. Тепловые, электри-					
ческие и магнитные свойства твердых тел.					
Лабораторная работа №3.3	1	1		3	3
Раздел 3 Атомное ядро и элементарные	L	1		3	3
частицы					
14. Атомное ядро.					
Строение атомных ядер. Ядерные силы.					
Обмен- ный характер ядерных сил.					
Закономерности альфа-, бета- и гамма-					
излучения. Ядерные реакции. Радиоактивные					
превращения атомных ядер. Реакции ядерного					
деления. Цепная реакция деления. Ядерный					
реактор. Реакция синтеза. Проблема					
источников энергии.					
Практическое занятие: Атомное ядро					
15. Элементарные частицы.	1	1		3	3
Сильное, электромагнитное, слабое,					
гравитаци- онное взаимодействия. Лептоны,					
адроны, кварки. Понятие об основных					
проблемах современной физики и					
астрофизики.					
Практическое занятие: Классификация					
элементарных частиц					
ИТОГО: 15	5	15	15	45	45

Перечень практических (семинарских) занятий

Тема 1. Электромагнитные волны.

Тема 2. Геометрическая оптика. Фотометрия

Интерференция света

Тема 3. Интерференция волн.

Тема 4. Дифракция волн.

Тема 5. Поляризация света. Дисперсия и распрострпнение света в веществе. Закон Бугера и поглощение света

Тема 6. Квантовая физика. Тепловое излучение. Энергия и импульс фотонов.

Тема 7. Фотоэффект. Фотоны. Эффект Комптона.

Тема 8. Корпускулярно- волновой дуализм. Волны де Бройля. Соотношение неопределённостей гейзенберга

Тема 9. Атом и молекула водорода в квантовой теории. Сериальные закономерности.

Тема 10. Рентгеновское излучение. Формула Мозли.

Тема 11. Лазеры

Тема 12. Конденсированное состояние.

Тема 13 Физика твердого тела. Элементы зонной теории. Тепловые, электрические и магнитные свойства твердых тел.

Тема 14. Атомное ядро.

Тема 15. Классификация элементарных частиц.

Перечень лабораторных занятий

1. Лабораторная работа № 80

Определение показателя преломления материалов.

2. Лабораторная работа № 66

Изучение интерференции с помощью лазера

3. Лабораторная работа № 72

Изучение явления дифракции света

4. Лабораторная работа № 102

Определение постоянной Стефана-Больцмана

5. Лабораторная работа № 64

Изучение внешнего фотоэффекта

6. Лабораторная работа № 68

Изучение спектров излучения и поглощения света

7. Лабораторная работа № 3.4

Изучение устройства и принципа работы лазеров.

8. Лабораторная работа № 3.3

Изучение зависимости сопротивления металлов и полупроводников от температуры

Тематический план самостоятельной работы студента с преподавателем

Наименование темы СРСП	Цель занятия	Форма проведен ия	Содержание занятия	Рекоменду емая литература
Волновое уравнение для электромагнитн ого поля. Понятие о лучевой (геометрической) оптике	Углубление знаний по данной теме.	Разбор задач Тесты	Задачи №№ 4.158; [6], 4.1,14.5,14.12 [8].	[3,6,7,8] [3,4,5,6]
Свойства световых волн.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи.№№ 4.158; 4.167; 4.169[6]	[3,6,7,8] [3,4,5,6]
Дифракция волн.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 16.12; 16.14; 16.27[7]	[3,6,7,8] [3,4,5,6]
Электромагнитн ые волны в веществе.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 16.30; 16.38; 16.42 [7].	[3,6,7,8] [3,4,5,6]
Тепловое излучение	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 5.157; 5.159; 5.162 [6].	[3,6,7,8] [3,4,5,6]
Эксперименталь ное обоснование основных идей квантовой теории	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№18.2; 18.13; 18.11. [7].	[3,6,7,8] [3,4,5,6]
Корпускулярновой дуализм.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи. №№ 5.178; 5.181; 5.192;5.194, 5.195. [6].	[3,6,7,8] [3,4,5,6]
Временное и стационарное уравнения Шредингера.	Углубление знаний по данной теме	Разбор задач	Задачи №№6.52; 6.63; 6.67 [6].	[3,6,7,8] [3,4,5,6]
Атом и	Углубление	Разбор	Задачи №№ 6.155;	

молекула водорода в квантовой теории.	знаний по данной теме	задач Тесты	6.156; 6.161 [6].	[3,6,7,8] [3,4,5,6]
Элементы квантовой электроники.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 6.104; 6. 106 [8].	[3,6,7,8] [3,4,5,6]
Элементы квантовой статистики.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 20.28, 20.30, 20.37, 20.41 [8].	[3,6,7,8] [3,4,5,6]
Конденсированн ое состояние.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 6.191; 6.192 [8]. №№	[3,6,7,8] [3,4,5,6]
Конденсированн ое состояние.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 6.196; 6.198; [6].	[3,6,7,8] [3,4,5,6]
Атомное ядро.	Углубление знаний по данной теме	Разбор задач	Задачи №№ 7.50; 7.58; 7.67; 7.76; 7.87 [6].	[3,6,7,8] [3,4,5,6]
Элементарные частицы.	Углубление знаний по данной теме	Разбор задач Тесты	Задачи №№ 7.97; 7.119; 7.123 [6].	[3,6,7,8] [3,4,5,6]

Темы контрольных заданий для СРС Раздел 1. Оптика

Тема 1 Волновое уравнение для электромагнитного поля. Понятие о лучевой (геометрической) оптике

- 1. Волновое уравнение для электромагнитного поля.
- 2. Плотность потока электромагнитной энергии. Вектор Умова-Пойнтинга. Излучение диполя
- 3. Закон прямолинейного распространения света.
- 4. Задачи №№ 4.158; [6], 4.1,14.5,14.12 [8]

5. Вопросы № 1-29 [2].

Тема 2. Тема 2 Интерференция волн

- 1. Волновой пакет. Групповая скорость.
- 2. Полосы равного наклона и равной толщины
- 3. Кольца Ньютона
- 4. Просветление оптики
- 5. Задачи №№ 4.158; 4.167; 4.169[6]
- 6. Вопросы № 59-87 [2].

Тема 3. Дифракция волн.

- . По какому принципу происходит разбиение волнового фронта на зоны Френеля?
 - 2. Дифракция на пространственной решетке.
 - 3. Разрешающая способность спектрального прибора.
 - 4. Спектральное разложение. Голография.
 - 5. Задачи № 16.30; 16.38; 16.42 [7].
 - 6. Вопросы № 88-116 и № 117-142 [2].

Тема 4. Электромагнитные волны в веществе

- 1. Давление света.
- 2. Поляризационные призмы и поляроиды.
- 3. Искусственная оптическая анизотропия.
- 4. Виды спектров поглощения.
 - 8. Задачи №№ 5.157; 5.159; 5.162 [6].
 - 9. Вопросы № 88-116 [2].

Раздел 1. Квантовая физика

Тема 5. Тепловое излучение

- 1. Виды оптических излучений.
- 2. Фотоны. Энергия и импульс световых квантов.
- 3. Оптическая пирометрия.
- 4. Задачи № 18.2; 18.13; 18.11. [7].
- 5. Вопросы № 117-145 [2].

Тема 6. Экспериментальное обоснование основных идей квантовой теории

- 1. 1 Опыты Франка и Герца.
- 1. Единство корпускулярных и волновых свойств света.
- 2. Модели Томсона и Резерфорда.
- 3. Линейчатый спектр атома водорода
- 4. Задачи № № 5.178; 5.181; 5.192;5.194, 5.195. [6].

Тема 7. Корпускулярно-волновой дуализм

- 1. Свойства волн де Бройля. Волновые свойства микрочастиц.
- 2. Следствия соотношений неопределенностей
- 3. Границы применимости квантовой механики
- 4. Принципиальные отличия принципа суперпозиции классической и квантовой механики. Принцип соответствия.

1. Задачи №6.52; 6.63; 6.67 [6].

Тема 8. Временное и стационарное уравнение Шредингера.

- 1. Преодоление потенциального барьера в классической и квантовой механике: принципиальные отличия.
 - 2. Линейный гармонический осциллятор.
 - 3. Туннельный эффект
 - 4. Задачи №№ 6.104; 6. 106 [6].

Тема 9. Атом и молекула водорода в квантовой теории

- 1. Водородоподобные атомы. Энергетические уровни. Ширина уровней
- 2. Правила отбора
- 3.Спин электрона
- 4. Распределение электронов в атоме по состояниям
- 7. Задачи №№ 6.155; 6.156; 6.161 [6].].
- 6. Вопросы № 291-319 [2].

Тема 10. Элементы квантовой электроники

- 1. Устройство и принцип работы лазеров
- 2. Технические применения лазеров
- 3. Задачи №№ 6.104; 6. 106 [8]..
- 4. Вопросы № 291-348 [2].

Тема 11. Элементы квантовой статистики

- 1. Математическая запись принципа неразличимости тождественных частиц.
- 2. Симметричные и антисимметричные волновые функции.
- 3. Чем определяется симметрия волновых функций?

Квазичастицы

- 4. Задачи №№ 6.155; 6.156[8].
- 5. Вопросы № 291-348 [2].

Тема 12. Конденсированное состояние

- 1. Низкоразмерные системы.
- 2. Элементы структурной кристаллографии. Методы исследования кристаллических структур
- 3. Поверхность Ферми.
- 4. Задачи №6.161 [8]..
- 5. Вопросы № 397-425 [2].

Тема 13. Конденсированное состояние (продолжение).

- 1. Приближение самосогласованного поля.
- 2. Явление сверхпроводимости.
- 3. Квантовые представления о свойствах ферромагнетиков. Обменное взаимодействие.
- 4. Намагничивание ферромагнетиков. Температура Кюри.
- 4. Задачи №№ 6.196; 6.198 [6].
- 6. Вопросы № 426-483 [2].

Раздел 3 Атомное ядро и элементарные частицы

Тема 14. Атомное ядро

1. Обменный характер ядерных сил.

- 2. Цепная реакция деления.
- 3. Ядерный реактор.
- 4. Реакция синтеза.
- 5. Проблема источников энергии.
- 6. Задачи №№ 7.50; 7.58; 7.67; 7.76; 7.87 [6].
- 7. Вопросы № 426-483 [2].

Тема 15. Элементарные частицы

- 1. Классификация элементарных частиц. Кварки.
- 2. Понятие об основных проблемах современной физики и астрофизики.
- 3. Задача № 10.81 [1].
- 4. Вопросы №№ 7.97; 7.119; 7.123 [6].

Критерии оценки знаний студентов

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100% в соответствии с таблицей.

таблицей.

Оценка по буквенной системе	Цифровые эквиваленты буквенной оценки	Процентное содержание усвоенных знаний	Оценка по традиционной системе
A	4,0	95-100	Отлично
A-	3,67	90-94	5 3333 333
B+	3,33	85-89	
В	3,0	80-84	Хорошо
В-	2,67	75-79	
C+	2,33	70-74	
C	2,0	65-69	
C-	1,67	60-64	Удовлетворительно
D+	1,33	55-59	_
D-	1,0	50-54	
F	0	0-49	Неудовлетворительно

Оценка «А» (отлично) выставляется в том случае, если студент в течение семестра показал отличные знания по всем программным вопросам дисциплины, а также по темам самостоятельной работы, регулярно сдавал рубежные задания, проявлял самостоятельность в изучении теоретических и прикладных вопросов по основной программе изучаемой дисциплины, а также по внепрограммным вопросам.

Оценка «А-» (отлично) предполагает отличное знание основных законов и процессов, понятий, способность к обобщению теоретических вопросов дисциплины, регулярную сдачу рубежных заданий по аудиторной и самостоятельной работе.

Оценка «В+» (хорошо) выставляется в том случае, если студент показал хорошие и отличные знания по вопросам дисциплины, регулярно сдавал семестровые задания в основном на «отлично» и некоторые на «хорошо».

Оценка «В» (хорошо) выставляется в том случае, если студент показал хорошие знания по вопросам, раскрывающим основное содержание конкретной темы дисциплины, а также темы самостоятельной работы, регулярно сдавал семестровые задания на «хорошо» и «отлично».

Оценка «В-»(хорошо) выставляется студенту в том случае, если он хорошо ориентируется в теоретических и прикладных вопросах дисциплины как по аудиторным, так и по темам СРС, но нерегулярно сдавал в семестре рубежные задания и имел случаи пересдачи семестровых заданий по дисциплине.

Оценка «С+» (удовлетворительно) выставляется студенту в том случае, если он владеет вопросами понятийного характера по всем видам аудиторных занятий и СРС, может раскрыть содержание отдельных модулей дисциплины, сдает на «хорошо» и «удовлетворительно» семестровые задания.

Оценка «С» (удовлетворительно) выставляется студенту в том случае, если он владеет вопросами понятийного характера по всем видам аудиторных занятий и СРС, может раскрыть содержание отдельных модулей дисциплины, сдает на «удовлетворительно» семестровые задания.

Оценка «С-» (удовлетворительно) выставляется студенту в том случае, если студент в течение семестра регулярно сдавал семестровые задания, но по вопросам аудиторных занятий и СРС владеет только общими понятиями и может объяснить только отдельные закономерности и их понимание в рамках конкретной темы.

Оценка «D+» (удовлетворительно) выставляется студенту в том случае, если он нерегулярно сдавал семестровые задания, по вопросам аудиторных занятий и СРС владеет только общими понятиями и может объяснить только отдельные закономерности и их понимание в рамках конкретной темы.

Оценка «D-» (удовлетворительно) выставляется студенту в том случае, если он нерегулярно сдавал семестровые задания, по вопросам аудиторных занятий и СРС владеет минимальным объемом знаний, а также допускал пропуски занятий.

Оценка «F» (неудовлетворительно) выставляется тогда, когда студент практически не владеет минимальным теоретическим и практическим материалом аудиторных занятий и СРС по дисциплине, нерегулярно посещает занятия и не сдает вовремя семестровые задания.

Рубежный контроль проводится на 7-й и 14-й неделях обучения и складывается исходя из следующих видов контроля:

				Aı	каде	мич	еск	ий пе	ри	од с	буч	ения	і, не	деля			
RICO	ие	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Вид контроля	%-ное																Итого
Посещаемос ть	0,2	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	3
Конспект лекций	0,2	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	3
Практ. зан.	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	15
Лаб. работы	1		*	*	*			*	*		*	*			*		10
Письменны й опрос	7							*							*		14
CPC	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	15
Всего по аттестациям								30							30		60
Экзамен		_		_	_												40
Всего																	100

Политика и процедуры

При изучении дисциплины «Физика II» прошу соблюдать следующие правила:

- 1. Не опаздывать на занятия.
- 2. Не пропускать занятия без уважительной причины, в случае болезни прошу представить справку, в других случаях объяснительную записку.
 - 3. В обязанности студента входит посещение всех видов занятий.
- 4. Согласно календарному графику учебного процесса сдавать все виды контроля.
- 5. Пропущенные практические занятия отрабатывать в указанное преподавателем время.
- 6. Пропущенные лекционные занятия (независимо от причины) отрабатывать в виде реферата по пропущенной тематике.
 - 7. Активно участвовать в учебном процессе.
- 8. Быть терпимыми, открытыми, откровенными и доброжелательными к сокурсникам и преподавателям.

Учебно-методическая обеспеченность дисциплины

Ф.И.О. автора	Наименование учебно-	Издательс	Колич	
	методической	тво,год	экземп	ляров
	литературы	издания	В	на
			библиоте	кафедре
			ке	
	Основная литера			T
Савельев И.В.	Курс общей физики. В 5 кн.	М. 2001 г.	120	10
Савельев И.В.	Курс общей физики в 3 томах.	М. 1982- 1989 г	2	
Трофимова Т.Н.	Курс физики.	М. 2004 г.	210	12
* *	* * * *	М. 1999 г	65	10
Детлаф А.А., Яворский Б.М.	Курс физики.	WI. 1999 I	03	
Сивухин Д.В.	Общий курс физики в	M. 1977-	157	8
	5-и томах.	1986 г		
Трофимова Т.И.	Сборник задач по	M. 2003	143	8
	курсу физики для втузов.			
Волькенштейн	Сборник задач по	СП.	139	6
B.C.	общему курсу физики	2007		
Волькенштейн	Сборник задач по	M. 1988.	250	15
B.C.	общему курсу физики.			
Чертов А.,	Задачник по физике.	М. 1988 г.	129	13
Воробьев А.	1			
Ясинский В.Б.	Лабораторный	КарГТУ,	50	5
	физический практикум:	2006.		
	волновая и квантовая			
	оптика, физика атома и			
	ядра. Учебное пособие			
Иродов И.Е.	Задачи по физике	M. 2001	50	2
1 , ,	Дополнительная ли	1		
Грабовский Р.И.	Курс физики.	М. 2004 г	10	2
Суханов А.Д.	Фундаментальный курс	М 1999 г		
	физики в 3-х т.			
Яворский Б.М.	Основы физики.	М. 2000 г.		
Ландсберг Г.С.	Оптика.	М. 1976 г.	86	10
Иродов И.Е.	Задачи по общей	М. 1999 г.	153	7
	физике.	1/// 1.	100	,
Савельев И.В.	Сб. вопросов и задач	М. 1988 г.	157	8
Cabelle II.D.	по общей физике.	1,1, 1,001.	10 /	
		3.5.465.5		4.5
Беликов Б.	Решение задач по	М. 1986 г.	143	19

	физике			
Ландсберг Г.С.	Оптика.	Москва, 1976 г.	86	10
Китель Ч.	Введение в физику твердого тела.	Москва, 1978 г.	60	6
Спроул Р.	Современная физика.	Москва, 1974 г.	56	3
Ясинский В.Б., Кузнецова Ю.А	Методические указания к лабораторным работам 3,3; 3.4. по дисциплине "ФИЗИКА".	KapΓΤУ, 2006.	50	5
Ясинский В.Б	Методические указания к лабораторным работам 4.1; 4.2по дисциплине "ФИЗИКА".	КарГТУ, 2006.	50	5
Ясинский В.Б.	Методические указания к лабораторным работам по дисциплине "ФИЗИКА": 4.3.; 4.4.	КарГТУ, 2006.	50	5
Кортнев А. В., Рублев Ю.В., Куценко А.Н	Практикум по физике.	М.1965 г	83	6

График выполнения и сдачи заданий по дисциплине

Вид контроля	Цель и содержание задания	Рекоменду емая литература	Продолжи тельность выполнен ия	Форма контро ля	Срок сдачи
СРС	Углубить знания по изучаемым темам	Весь перечень основ ной и дополнитель ной литературы	Ежене- дельно	Теку- щий	Ежене-
Защита лабораторны х работ 80, 66, 72, 102	Углубить знания по теме «Геометрическая и волновая оптика. Квантовая физика»	[1,3,4,10], [1,3,7,13]	1-7 недели	Теку- щий	2, 3, 4,7 недели

Решение	Vглубить энэния		1-7	Теку-	1-7
	Углубить знания по теме: «Вол-		-	ций	·
задач на			недели	щии	недели
практических	новое уравнение				
занятиях	для электромаг-	[3,6,7,8,9],			
	нитного поля.	[3,4,5,6]			
	Геометрическая				
	и волновая оп-				
	тика. Квантовая				
	физика»				
Письменный	Проверка знаний		7 неделя	Рубеж	7
опрос № 1	по теме:«Геомет-			ный	неделя
	рическая и вол-	[1,2,3,4,5],			
	новая оптика.	[1,2,3,5]			
	Квантовая физи-				
	ка»				
Защита лабо-	Углубить знания	[1,3,4,10],	8-10	Теку-	8,10
раторных	по теме: «Кван-		недели	щий	недели
работ 64, 68,	товая физика»	[1,3,7,8,13]			
Решение	Углубить знания		8-13	Теку-	9
задач на	по теме	[3,6,7,8,9],	недели	щий	неделя
практических	«Квантовая	[3,4,5,6]			
занятиях	физика»				
Защита лабо-	Углубить знания		11-14	Теку-	11,14
раторных	по теме «Лазеры.	[1,3,4,11],	неделя	щий	неделя
работ 3.3, 3.4	Конденсированн	[1,3,7,8,13]			
	ое состояние».				
Решение	Углубить знания		14-15	Теку-	14-15
задач на	по теме «Атом-	F2 (7 0 0 1		щий	
практических	ное ядро и эле-	[3,6,7,8,9],		,	
занятиях	ментарные час-	[3,4,5,6]			
	тицы».				
Письменный	Проверка знаний		14 неделя	Рубеж	14
опрос № 2	по теме «Кван-			ный	неделя
	товая физика.	[1,2,3,4,5],		112111	110,700.11
	Атомное ядро и	[1,2,3,8,9]			
	элементарные	[+,-,-,0,0,7]			
	частицы».				
Экзамен	Проверка	Весь пере-	2 контакт-	Итого-	В
- Nouvion	усвоения	чень ос-	ных часа	вый	период
	материала	новной и	HDIA -Iaca	ואושט	сессии
	дисциплины	дополните			CCCPIPI
	дисциплипы	льной ли-			
		тературы			

Вопросы для самоконтроля

- 1. Что такое электромагнитная волна?
- 2. Сформулируйте основные свойства электромагнитных волн.
- 3. Какова скорость распространения электромагнитной волны?
- 4. Что может служить источником электромагнитных волн?
- 5. В чём заключается физический смысл вектора Умова-Пойнтинга? Чему он равен?
- 6. В чём заключается физический смысл диаграммы направленности излучения диполя?
- 7. Сформулируйте и поясните основные законы распространения света.
- 8. Когда при преломлении на границе раздела двух диэлектриков угол преломления больше угла падения?
- 9. Сформулируйте принцип Ферма.
- 10. Что меняется при переходе света из среды с показателем преломления n_1 в среду с показателем преломления n_2 ?
- 11.В каких веществах наблюдают аномальную дисперсию?
- 12. Какие волны называются когерентными?
- 13. Какую величину называют временем когерентности? Длиной когерентности?
- 14. Что такое оптическая длина пути? Оптическая разность хода?
- 15.. В чём заключается явление интерференции?
- 16. что такое полосы равного наклона и равной толщины?
- 17. Светлый или тёмный центр колец Ньютона в проходящем свете?
- 18.В чём заключается явление просветления оптики?
- 19.Почему слой с оптической толщиной в четверть длины волны служит для полного гашения отражённых лучей?
- 20. Сформулируйте принцип Гюйгенса.
- 21. Что позволил объяснить принцип Гюйгенса-Френеля?
- 22. Что называют зоной Френеля?
- 23. Когда наблюдается дифракция Френеля? Дифракция Франгоуфера?
- 24.Отличается ли дифракция на щели при освещении её монохроматическим и белым светом?
- 25. Что называют периодом дифракционной решётки?
- 26.Запишите условия дифракционных минимумов на одной щели и главных максимумов на решетке.
- 27. Какое практическое применение имеет условие Вульфа-Брэггов?
- 28.В чём заключается идея голографирования?
- 29. Чем отличается нормальная дисперсия от аномальной?
- 30.В чём заключаются основные положения электронной теории дисперсии света?
- 31. Какое явление доказывает поперечность световых волн?
- 32. Что происходит, при вращении поляризатора, если на поляризатор падает плоскополяризованный свет?

- 33. Как практически отличить естественный свет от плоскополяризованного?
- 34.Покажите, что при падении луча под углом Брюстера его отражённый и преломлённый лучи взаимноперпендикулярны.
- 35. Что такое двойное лучепреломление? Когда оно возникает?
- 36. Что называется оптической осью кристалла?
- 37. Что называется пластинкой в четверть волны? В полволны?
- 38. Какие вещества называют оптически активными?
- 39. Какие явления можно объяснить и квантовой, и волновой теорией света?
- 40. Что называют АЧТ?
- 41.В чём заключается физический смысл универсальной функции Кирхгофа?
- 42. Законы Вина.
- 43. Сформулируйте закон Стефана-Больцмана.
- 44. Как определить массу и импульс фотона?
- 45. Чем объясняется характеристическое рентгеновское излучение?
- 46. Условия возникновения фотоэффекта.
- 47. Как с помощью уравнения Эйнштейна объяснить I и II законы фотоэффекта?
- 48. Нарисуйте и объясните вольтамперную характеристику фотоэлемента.
- 49. Чему равно отношение давлений света на зеркальную и зачерненную поверхности?
- 50.В чём отличие характера взаимодействия фотона и электрона при фотоэффекте и эффекте Комптона?
- 51. Чем отличается лазерное излучение от остальных видов излучения?
- 52. Какую роль выполняет оптический резонатор в лазере?
- 53. Чем не устраивала модель атома Резерфорда классическая электродинамика?
- 54. Сформулируйте постулаты Бора.
- 55. Что определяет квадрат модуля волновой функции?
- 56. Какими свойствами микрочастиц обусловлен туннельный эффект?
- 57. Какова наименьшая энергия частицы в бесконечно глубоком «потенциальном ящике»?
- 58. Как изменится коэффициент прозрачности потенциального барьера с ростом его высоты?
- 59.В каких веществах наблюдается внутренний фотоэффект?
- 60. Какие главные квантовые числа вы знаете?
- 61. Принцип Паули.
- 62. В чём суть принципа неопределимости тождественных частиц?
- 63. Как называется собственный момент количества движения элементарной частицы, имеющий квантовую природу и не связанный с перемещением частицы как целого? Как называются частицы или квазичастицы с полуцелым спином?
- 64. Чем отличается ферми-газ от бозе-газа?

- 65.когда распределения Ферми-Дирака и Бозе-Эйнштейна переходят в классическое распределение Максвелла-Больцмана?
- 66. Что такое фонон? Каковы его свойства?
- 67. Как объясняет квантовая статистика отсутствие заметного отличия теплоёмкостей металлов и диэлектриков?
- 68. Чем различаются по зонной теории металлы, полупроводники и диэлектрики?
- 69.. Что такое запрещенная зона?
- 70. Что такое энергия Ферми?
- 71. Чем объясняется проводимость собственных полупроводников? Примесных полупроводников?
- 72. Что такое красная граница фотопроводимости?
- 73. Поясните физические процессы, происходящие в *p-n*-переходе?
- 74. Какие частицы образуют ядро атома?
- 75. Чем отличаются изотопы от изотонов?
- 76. Что называют радиоактивным распадом? Каким соотношением связан период полураспада $T_{1/2}$ с постоянной радиоактивного распада λ ?
- 77. Как и по какому закону изменяется активность нуклида?
- 78. Как объясняется а-распад на основе квантовых представлений?
- 79. Чем объясняется непрерывность энергетического спектра β-частиц?
- 80.По каким признакам можно классифицировать ядерные реакции?
- 81. Что представляют собой реакции деления?
- 82.В чём заключаются трудности в осуществлении реакции управляемого термоядерного синтеза?
- 83. Какие частицы называются нуклонами?
- 84. Какой заряд имеют кварки?
- 85. Какие виды взаимодействия вы знаете?
- 86. Какой вид взаимодействия обеспечивается фотонами?
- 87.По каким признакам классифицируются элементарные частицы?

Гос. изд. лиц. № 50 от 31.03.2004 г. Подписано в печать Формат 60 x 90/16

Усл.печ.л. п.л. Тираж экз. Заказ Цена договорная