Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина MRS 3219 «Манипуляторы и робототехнические системы» Модуль OASDM 10 «Основы автоматизации строительных и дорожных машин»

Специальность 5В071300 – Транспорт, транспортная техника и технологии

Транспортно-дорожный факультет

Кафедра «Строительные и дорожные машины»

Предисловие

Программа обучения по дисциплине для студента (syllabus) разработана: к.т.н., доц. кафедры СДМ Бестембек Е.С.

Обсуждена на зас	едании каф	едры «С	Строит	гельные	и до	рожны	е машин	(Ы»
Протокол №	OT «			20) 1			
Зав. кафедрой			«	»		20	г.	
	(подпись)							
Одобрена учебно-	методичесн	ким сов	етом т	ранспор	онто-	дорожі	ного Инс	ститута
Протокол №	OT «	»		2	20	Γ.		
Председатель		«	>>			20	Γ.	
L -UU	(полике)							

Сведения о преподавателе и контактная информация

Бестембек Ербол Серикович, проф. каф. СДМ

Кафедра СДМ находится в 1-ом корпусе КарГТУ (Караганда, Б.Мира 56), аудитория 232, контактный телефон 56-59-32 доб. 2040.

Трудоемкость дисциплины

	0		В	вид занятий					
Гр		количе	ство контаі	ктных часов	количе-		Количе-	Общее	
Эемест	тче цит СТ;		практиче-		ство ча-	всего		количе-	Форма
Cel	олк кре, Е	лекции	ские	лабораторные занятия	сов	часов	сов СРС	ство ча-	контроля
	K		занятия	эшигий	СРСП			СОВ	
5	3/5	30	-	15	45	90	45	135	Тесты

Характеристика дисциплины

Дисциплина «Манипуляторы и робототехнические системы» не является обязательной компонентой цикла профильных дисциплин.

Сложные технологические процессы в разнообразных отраслях строительства требуют выполнения различных операция с высокой степенью качества, что не возможно при механизации труда. Дисциплина изучает основные принципы построения робототехнических систем для промышленности.

Цель дисциплины

Целью дисциплины является приобретение студентами знаний в области теоретических основ автоматики, навыков постановки задачи по автоматизации промышленных роботов, умения разрабатывать функциональные и электрические схемы автоматического контроля и управления промышленным роботом на основе существующей нормативно-технической документации, а также навыков эксплуатации робототехнических систем.

Задачи дисциплины

Задачи дисциплины - изучить основы построения робототехничесчких систем; конструктивное исполнение элементов промышленных роботов, входящих в данные системы.

В результате изучения данной дисциплины студенты должны:

иметь представление об общих принципах построения автоматизированных робототехнических систем, путях повышения эффективности их эксплуатации;

знать теоретические основы автоматического управления и регулирования промышленным роботом, устройство и принцип действия основных робототехнических систем;

уметь формулировать цели и задачи автоматизации производства с применением промышленных роботов, осуществлять правильный выбор средств и эле-

ментов робототехнических систем, обеспечивать эксплуатацию автоматизированных промышленных роботов;

приобрести практические навыки использования полученных знаний для решения задач по автоматизации производства на основе применения промышленных роботов, а также навыков эксплуатации и настройки робототехнических систем.

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих дисциплин (с указанием разделов (тем)):

Дисциплины	Наименование разделов (тем)							
Математика	Дифференциальное исчисление. Разделы тригонометрии, теории							
	комплексных переменных и операционного исчисления. Математи-							
	ческое моделирование и программирование. Методы линеариза							
Гидро- и пневмопривод	Основы гидростатики и гидродинамики. Рабочие жидкости и их							
	свойства. Объемный гидропривод. Агрегаты гидравлических си-							
	стем.							
Классификация, и устройство	Классификация технологических машин Назначение и техниче-							
транспортной техники	ские функции технологических машин и их основных функциональ-							
	ных элементов. Функциональные структуры технологических ма-							
	шин.							

Постреквизиты

Знания, полученные при изучении дисциплины «Технические средства автоматизации строительно-дорожных машин», используются при освоении следующих дисциплин: «дорожные машины», «машины для земляных работ».

Тематический план дисциплины

	Труд	доемкость і	по видам за	нятий, ч	іас.				
Наименование раздела, (темы)	лекции	практи- ческие	лабора- торные	СРСП	CPC				
1. История развития пробототехники	2	-	-	3	3				
2. Функциональные механизмы и системы промышленного робота	2	-	4	3	3				
3. Структура и кинематика руки робота	2	-	-	3	3				
4. Метод объемов и его использование при синтезе манипулятора и планировании движений	2	-	-	3	3				
5. Кинематика передачи привода звеньев механической руки	2	-	-	3	3				
6. Статика механической руки робота	2	1	1	3	3				
7. Точностные модели промышленных роботов и способы повышения точности воспроизведения программных движений	2	-	2	3	3				
8. Динамика механической руки промышленного робота	2	-	2	4	4				

9. Динамика цикловых роботов с рекуперацией механической энергии	2	-	2	4	4
10. Устойчивость многомерных систем автоматического регулирования промышленного робота	2	-	3	4	4
11. Автоматизация программирования элементарных движений робота. Задачи, модели, принципы решения, алгоритмы	2	1	2	4	4
12. Модели систем очувствления роботов, процессов обработки информации и принятия решений	4	-		4	4
13. Особенности разработки интерфейса человек-робот	4	-		4	4
Итого	30	-	15	45	45

Перечень лабораторных занятий

- 1 Первичные элементы автоматики
- 2 Определение передаточных функций линейных САР
- 3 Преобразование структурных схем
- 4 Структурный и кинематический анализ манипуляторов
- 5 Определение функции положения манипуляционной системы
- 6 Определение устойчивости систем

Тематический план самостоятельной работы студента с преподавателем

Наименование те-	Цель занятия	Форма прове-	Содержание	Рекомендуемая
мы СРСП		дения занятия	задания	литература
1	2	3	4	5
1. История развития пробототехники	Углубление знаний по данной теме	Собеседование	Ответить на поставленные вопросы	[1][2] [4]
2. Функциональные механизмы и системы промышленного робота	Углубление знаний по данной теме	Собеседование	Ответить на поставленные вопросы	[1] [2] [3] [4]
3. Структура и кинематика руки робота	Углубление знаний по данной теме	Собеседование	Ответить на поставленные вопросы	[3] [4] [5]
4. Метод объемов и его использование при синтезе манипулятора и планировании движений	Углубление знаний по данной теме	Собеседование	Ответить на поставленные вопросы	[2] [4] [5]
5. Кинематика передачи привода	Углубление знаний по	Собеседование	Ответить на поставленные	[4] [5]

звеньев механиче-	данной теме		вопросы	
ской руки 6. Статика механи-	Углубление	Собеседование	Ответить на	[4]
ческой руки робо-	знаний по		поставленные	[5]
та	данной теме		вопросы	
7. Точностные мо-		Собеседование	Ответить на	[1]
дели промышлен-			поставленные	[3]
ных роботов и способы повыше-	Углубление		вопросы	[4]
ния точности вос-	знаний по			[5]
произведения про-	данной теме			
граммных движе-				
ний 8. Динамика меха-		Собеседование	Ответить на	[1]
нической руки	Углубление	Соосседованис		[3]
промышленного	знаний по		поставленные	
робота	данной теме		вопросы	[4]
О П		0.5		[5]
9. Динамика цик- ловых роботов с	Углубление	Собеседование	Ответить на	[1]
рекуперацией ме-	знаний по		поставленные	[3]
ханической энер-	данной теме		вопросы	[4]
ГИИ				[5]
10. Устойчивость	**	Собеседование	Ответить на	[1]
многомерных си- стем автоматиче-	Углубление		поставленные	[3]
ского регулирова-	знаний по		вопросы	[4]
ния промышленно-	данной теме			[5]
го робота				543
11. Автоматизация		Собеседование	Ответить на	[1]
программирования элементарных	Углубление		поставленные	[3]
движений робота.	знаний по		вопросы	[4]
Задачи, модели,	данной теме			[5]
принципы реше-				
ния, алгоритмы 12. Модели систем		Собеседование	Ответить на	[1]
очувствления ро-	Углубление	Соосседование		
ботов, процессов	знаний по		поставленные	[3]
обработки инфор-	данной теме		вопросы	[4]
мации и принятия	данной теме			[5]
решений 13. Особенности		Собеседование	Ответить на	[1]
разработки интер-	Углубление	Соосседование	поставленные	[3]
фейса человек-	знаний по			[4]
робот	данной теме		вопросы	[5]
				[2]

Темы контрольных заданий для СРС

Тема 1.

- 1. Сформулируйте концепцию автоматизации СДМ.
- 2. Назовите состояния, в которых может находиться машина в процессе эксплуатации, и дайте их определения.
 - 3. Назовите основные понятия автоматики.
 - 4. Укажите, какие особенности присущи автоматизации СДМ.
 - 5. Укажите основные вехи развития автоматики и автоматизации.
 - 6. Поясните экономическую эффективность автоматизации.
 - 7. Назовите особенности автоматизации СДМ.
 - 8. Принцип действия систем дистанционного управления.
 - 9. Устройство телеметрических систем.
 - 10. Обобщенная схема регулируемого объекта

Тема 2.

- 1. С помощью каких ПИП производится измерение параметров технологических процессов.
 - 2. Как классифицируются датчики.
 - 3. Какие датчики относятся к параметрическим.
 - 4. Какие датчики относятся к генераторным.
 - 5. Какие датчики относятся к кодовым.
 - 6. Устройство измерительной цепи.
 - 7. Типы соединения элементов автоматики.
 - 8. Методы измерения давления.
 - 9. Методы измерения скорости.
 - 10. Методы измерения перемещения.
 - 11. Методы измерения температуры.
 - 12. Назначение САК.
 - 13. Функциональные связи элементов САК.
 - 14. Назначение элемента САК СОХИ.
- 15. Возмущающие воздействия, их влияние на объект регулирования и управления.

Тема 3.

- 1. Объекты регулирования и управления.
- 2. Классификация технологических процессов.
- 3. Варианты автоматизации технологических процессов строительных работ.
 - 4. Регулирование оптимальной нагрузки.

Тема 4.

- 1. Структура и рабочий процесс дозирующих устройств.
- 2. Схемы автоматического управления и регулирования дозирующих машин и оборудования.
 - 3. особенности автоматизации непрерывных и циклических дозаторов.

Тема 5.

1. Структура и рабочий процесс дробильных установок.

- 2. Автоматизация технологического процесса дробления материалов.
- 3. Особенности автоматизации дробилок различных типов.

Тема 6.

- 1. Структура и рабочий процесс смесительных агрегатов.
- 2. Автоматизация технологического процесса смешивания компонентов различных смесей и растворов.
 - 3. Особенности автоматизации циклических и непрерывных смесителей.

Тема 7.

- 1. Автоматизация асфальтобетонных и цементобетонных заводов.
- 2. Автоматизация дробильно-сортировочных заводов.

Тема 8

- 1. Направления автоматизации рабочими процессами СДМ.
- 2. Агрегатированные комплекты аппаратуры для автоматизации СДМ.
- 3. Промышленные роботы.

Тема 9

- 1. Оптимизация технологических процессов СДМ.
- 2. Средства оптимизации параметров СДМ.
- 3. Стабилизация угла наклона отвала автогрейдера.

Тема 10

- 1. Автоматическое управление продольной планировки.
- 2. Копирные системы.
- 3. Системы стабилизации продольного уклона.
- 4. Навигационные системы.

Критерии оценки знаний студентов

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100% в соответствии с таблицей.

аолицеи.			
Оценка по бук-	Цифровые экви-	Процентное со-	Оценка по
венной системе	валенты буквен-	держание усво-	традиционной
венной системе	ной оценки	енных знаний	системе
A	4,0	95-100	Отлично
A-	3,67	90-94	Отлично
B+	3,33	85-89	
В	3,0	80-84	Хорошо
B-	2,67	75-79	_
C+	2,33	70-74	
C	2,0	65-69	
C-	1,67	60-64	Удовлетворительно
D+	1,33	55-59	_
D-	1,0	50-54	
F	0	0-49	Неудовлетворительно

Оценка «А» (отлично) выставляется в том случае, если студент в течение се-

местра показал отличные знания по всем программным вопросам дисциплины, а также по темам самостоятельной работы, регулярно сдавал рубежные задания, проявлял самостоятельность в изучении теоретических и прикладных вопросов по основной программе изучаемой дисциплины, а также по внепрограммным вопросам.

Оценка «А-» (отлично) предполагает отличное знание основных законов и процессов, понятий, способность к обобщению теоретических вопросов дисциплины, регулярную сдачу рубежных заданий по аудиторной и самостоятельной работе.

Оценка «В+» (хорошо) выставляется в том случае, если студент показал хорошие и отличные знания по вопросам дисциплины, регулярно сдавал семестровые задания в основном на «отлично» и некоторые на «хорошо».

Оценка «В» (хорошо) выставляется в том случае, если студент показал хорошие знания по вопросам, раскрывающим основное содержание конкретной темы дисциплины, а также темы самостоятельной работы, регулярно сдавал семестровые задания на «хорошо» и «отлично».

Оценка «В-»(хорошо) выставляется студенту в том случае, если он хорошо ориентируется в теоретических и прикладных вопросах дисциплины как по аудиторным, так и по темам СРС, но нерегулярно сдавал в семестре рубежные задания и имел случаи пересдачи семестровых заданий по дисциплине.

Оценка «С+» (удовлетворительно) выставляется студенту в том случае, если он владеет вопросами понятийного характера по всем видам аудиторных занятий и СРС, может раскрыть содержание отдельных модулей дисциплины, сдает на «хорошо» и «удовлетворительно» семестровые задания.

Оценка «С» (удовлетворительно) выставляется студенту в том случае, если он владеет вопросами понятийного характера по всем видам аудиторных занятий и СРС, может раскрыть содержание отдельных модулей дисциплины, сдает на «удовлетворительно» семестровые задания.

Оценка «С-» (удовлетворительно) выставляется студенту в том случае, если студент в течение семестра регулярно сдавал семестровые задания, но по вопросам аудиторных занятий и СРС владеет только общими понятиями и может объяснить только отдельные закономерности и их понимание в рамках конкретной темы.

Оценка «D+» (удовлетворительно) выставляется студенту в том случае, если он нерегулярно сдавал семестровые задания, по вопросам аудиторных занятий и СРС владеет только общими понятиями и может объяснить только отдельные закономерности и их понимание в рамках конкретной темы.

Оценка «D-» (удовлетворительно) выставляется студенту в том случае, если он нерегулярно сдавал семестровые задания, по вопросам аудиторных занятий и СРС владеет минимальным объемом знаний, а также допускал пропуски занятий.

Оценка «F» (неудовлетворительно) выставляется тогда, когда студент практически не владеет минимальным теоретическим и практическим материалом аудиторных занятий и СРС по дисциплине, нерегулярно посещает занятия и не сдает вовремя семестровые задания.

Рубежный контроль проводится на 7, 14-й неделях обучения и складывается

исходя из следующих видов контроля:

Вид контроля	ое содержание		Академический период обучения, неделя									Hroro, %					
В	%-0e	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Посещае-	0,5	*	*	*	*	*	*	*	*	*	*	*	*	*	*		7,0
Конспекты лекций	2,0			*		*		*			*		*		*		12,0
Тестовый (письменный) опрос	11,5							*							*		23,0
Выполнение лаборатор- ных заданий	3,0			*		*		*			*		*		*		18,0
Всего по аттестациям								30							30		60
Экзамен																	40
Всего																	100

Политика и процедуры

При изучении дисциплины «Манипуляторы и робототехнические системы» прошу соблюдать следующие правила:

- 1. Не опаздывать на занятия.
- 2. Не пропускать занятия без уважительной причины, в случае болезни прошу представить справку, в других случаях объяснительную записку.
 - 3. В обязанности студента входит посещение всех видов занятий.
- 4. Согласно календарному графику учебного процесса сдавать все виды контроля.
- 5. Пропущенные практические занятия отрабатывать в указанное преподавателем время.
- 6. Пропущенные лекционные занятия (независимо от причины) отрабатывать в виде реферата по пропущенной тематике.
 - 7. Активно участвовать в учебном процессе.
- 8. Быть терпимыми, открытыми, откровенными и доброжелательными к сокурсникам и преподавателям.

Учебно-методическая обеспеченность дисциплины

Ф.И.О.	Наименование	Издательство,	Количество экземпляров				
автора	учебно-методической литературы	год издания	в библиотеке	на кафедре			
Основная литература							

1 Корендясев А.И., Сала- мандра Б.Л., Тывес Л.И.	Теоретические основы робототехники	СПб.: БХВ- Петербург, 2006г.	10	1
2 Воротников С.А.	Информационные устройства робототехнических систем.	М.: Наука, 2005г.	30	1
3 Афонин В.Л.	Интеллектуальные робото- технические системы	М.: Наука, 2005г.	10	1
4 Морозов В.К., Рогачев В.Н.	Моделирование информационных и динамических систем.	М.: Наука, 2011г.	10	1
5 Бишоп О.	шоп О. Настольная книга разработ- чика роботов		5	1
6 Юревич Е.И.	Основы робототехники	М., Академия, 2005 г., 416с.	5	1
7 Карцева Программируемые роботы A.Ю.		М., HT Пресс, 2006 г., 240с.	10	1
	Дополнительна	я литература		
8 Жимарши Ф.	Сборка и программирование мобильных роботов	М.: HT Пресс, 2007г. 288с.	10	1
9 Козырев Ю.Г.	Промышленные роботы	К.: МК-Пресс, 2009 г, 316с.	10	1
10 Солоненко В. Г., Габдуллин М. Д., Шимбулатова А. Б., Туркебаев М. Ж.	Основы теории автоматического управления транспортной техники	2006	5	1

График выполнения и сдачи заданий по дисциплине

Вид кон- троля	Цель и содержание задания	Рекомендуемая литература	Продолжи- тельность вы- полнения	Форма кон- троля	Срок сдачи
Тестовый (письменный) опрос	Закрепление теоретических знаний и практических навыков	[1], [2], [3], [4], конспекты лек- ций	1 контактный час	Рубежный	7 неде- ля
Тестовый (письменный) опрос	Закрепление тео- ретических зна- ний и практиче-	[3], [4], [9], [10], конспекты лекций	1 контактный час	Рубежный	14 не- деля

	ских навыков				
Проверка конспекта лекций и практических заданий	Закрепление теоретических знаний и практических навыков	[3], [5], [7], [9], [10], конспекты лекций	1 контактный час	Текущий	3, 5, 7, 10, 12, 14 не- дели
Экзамен	Проверка усвоения материала дисциплины	Весь перечень основной и до- полнительной литературы	2 контактных часа	Итоговый	В пери- од сес- сии

Вопросы для самоконтроля

- 1. Сформулируйте концепцию автоматизации СДМ.
- 2. Назовите состояния, в которых может находиться машина в процессе эксплуатации, и дайте их определения.
- 3. Назовите основные понятия автоматики.
- 4. Укажите, какие особенности присущи автоматизации СДМ.
- 5. Укажите основные вехи развития автоматики и автоматизации.
- 6. Поясните экономическую эффективность автоматизации.
- 7. Назовите особенности автоматизации СДМ.
- 8. Принцип действия систем дистанционного управления.
- 9. Устройство телеметрических систем.
- 10.Обобщенная схема регулируемого объекта
- 11.С помощью каких ПИП производится измерение параметров технологических процессов.
- 12. Как классифицируются датчики.
- 13. Какие датчики относятся к параметрическим.
- 14. Какие датчики относятся к генераторным.
- 15. Какие датчики относятся к кодовым.
- 16. Устройство измерительной цепи.
- 17. Типы соединения элементов автоматики.
- 18. Методы измерения давления.
- 19. Методы измерения скорости.
- 20. Методы измерения перемещения.
- 21. Методы измерения температуры.
- 22. Назначение САК.
- 23. Функциональные связи элементов САК.
- 24. Назначение элемента САК СОХИ.
- 25. Возмущающие воздействия, их влияние на объект регулирования и управления.
- 26. Объекты регулирования и управления.
- 27. Классификация технологических процессов.
- 28.Варианты автоматизации технологических процессов строительных работ.
- 29. Регулирование оптимальной нагрузки.

- 30. Структура и рабочий процесс дозирующих устройств.
- 31.Схемы автоматического управления и регулирования дозирующих машин и оборудования.
- 32. особенности автоматизации непрерывных и циклических дозаторов.
- 33. Структура и рабочий процесс дробильных установок.
- 34. Автоматизация технологического процесса дробления материалов.
- 35.Особенности автоматизации дробилок различных типов.
- 36.Структура и рабочий процесс смесительных агрегатов.
- 37. Автоматизация технологического процесса смешивания компонентов различных смесей и растворов.
- 38.Особенности автоматизации циклических и непрерывных смесителей.
- 39. Автоматизация асфальтобетонных и цементобетонных заводов.
- 40. Автоматизация дробильно-сортировочных заводов.
- 41. Направления автоматизации рабочими процессами СДМ.
- 42. Агрегатированные комплекты аппаратуры для автоматизации СДМ.
- 43. Промышленные роботы.
- 44.Оптимизация технологических процессов СДМ.
- 45. Средства оптимизации параметров СДМ.
- 46.Стабилизация угла наклона отвала автогрейдера.
- 47. Автоматическое управление продольной планировки.
- 48. Копирные системы.
- 49. Системы стабилизации продольного уклона.
- 50. Навигационные системы.