Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

«Утверждан	
	ль Ученого совета
	демик НАН РК
Газалиев А	.IVI.
	2015
«»	2015 г.

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина TVMS 3212 «Теория вероятностей и математическая статистика»

Модуль МО 19 «Математическое обеспечение»

Специальность 5В100200 - «Системы информационной безопасности»

Факультет – «Информационных технологий»

Кафедра «Информационные технологий и безопасности»

Предисловие

Программа обучения по дисциплине для студента (syllabus) разработана: к.т.н., доцентом Мендекеновым Канатом Кенжегалиевичем

Обсуждена на заседании кафедры «Информопасность»	мационные	гехнологии и без-
Протокол № от «»_ Зав. кафедрой Коккоз М.М.	2015 г. «»	2015 г.
Одобрена учебно-методическим советом технологий	Факультета	информационных
Протокол № от «»_ Председатель Мустафина Л.М.	2015 г. «»	2015 г.

Сведения о преподавателях и контактная информация

Мендекенов Канат Кежегалиевич, к.т.н., доцент.

Кафедра «Информационных технологий и безопасности» находится в главном корпусе КарГТУ (Караганда, Б.Мира 56), аудитория 429, контактный телефон 56-75-98 (1028), электронный адрес www.kstu.kz.

Трудоемкость дисциплины

				Вид занятий			ı,			
crbo rob		количество контактных часов		коли-		ство ча СРС	количе	Фотус		
Семестр	Количе	Количество кредитов ЕСТS	лекции	практи- ческие занятия	лабора- торные занятия	чество часов СРСП	асов часов	Количест сов С	Общее ко ство ча	Форма контроля
5	3	2	15	-	15	30	60	30	90	Тестовое
										задание

Характеристика дисциплины

Дисциплина «Теория вероятностей и математическая статистика» является компонент по выбору цикла базовых дисциплин.

Теория вероятностей - это математическая наука, изучающая закономерности в случайных явлениях. Случайные события, как они понимаются в теория вероятностей, обладают рядом характерных особенностей, в частности, все они происходят в массовых явлениях.

Во всех случаях, когда применяются вероятностные методы исследования, их цель состоит в том, чтобы, минуя слишком сложное (часто практически невозможное) изучение отдельного явления, обусловленного большим числом факторов, обратиться к законам, управляющим непосредственно массами случайных явлений.

Математические законы теории вероятностей – отражение реальных статистических законов, объективно существующих в массовых случайных явлениях природы.

Математическая статистика изучает методы сбора, записи, систематизаци и обработки наблюдений с целью выявления статистических закономерностей.

Математическая статистика, опираясь на вероятностные модели, в свою очередь, влияет на теорию вероятностей.

Теория вероятностей и математическая статистика должно описывать во взаимосвязи объект, процесс и средства автоматизации проектирования.

Цель дисциплины

Целью данной дисциплины является изложение основных сведений о построении и анализе математических моделей, учитывающих случайные факторы.

Задачи дисциплины

Основной задачей является ознакомление студентов с основами теории вероятностей и математической статистики в рамках конечномерных случайных величин без строгого применения теории меры и функционального анализа.

В результате изучения данной дисциплины студенты должны: иметь представление о:

- случайных событиях и величинах;
- природе случайного явления и его влиянии на математическую модель; методах моделирования случайного явления;

знать: основные фундаментальные понятия теории вероятностей:

- аксиоматическое обоснование теории вероятностей и вытекающие из этого свойства вероятности;
 - свойства случайных величин и их распределений;
 - схему Бернулли и связанные с ним предельные теоремы;
 - числовые характеристики случайных величин;
 - цепи Маркова;
 - характеристические функции;
 - законы больших чисел и центральную предельную теорему;
 - условные распределения вероятностей и условные математические ожидания;
 - основные понятия математической статистики;
 - точечные оценки и методы их получения;
 - классификацию оценок;
 - интервальные оценки;
 - основы теории проверки гипотез;
 - корреляционную теорию случайных процессов;
- основные понятия марковского процесса; свойства винеровского и пуассоновского процессов;

уметь:

- строить традиционные математические модели, правильно отражающие те или иные стороны реальных случайных явлений;
 - решать задачи на классическое и геометрическое определение вероятностей;
- находить законы распределения функций от случайных величин; вычислить моменты случайных величин;
- применить простейшие варианты центральных предельных теорем к конкретным модельным задачам;
- находить эмпирические функции распределения, выборочные моменты, оценки методов наименьших квадратов, максимального правдоподобия;
 - строить доверительные интервалы для неизвестных параметров;
 - биноминальной и нормальной совокупности;
 - вычислить простейшие стохастические интервалы;
 - находить предельные распределения для простейших цепей Маркова;
- находить распределения простейших функционалов от макровских процессов;
 приобрести практические навыки:
- в выборе методов моделирования случайных величин с заданными распределениями;
 - применения современных математических пакетов;
- реализации алгоритмов изучаемых математических методов с помощью современных сред программирования;

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих дисциплин: «Информатика», «Алгоритмические языки и программирование»

Постреквизиты

Знания, полученные при изучении дисциплины «Теория вероятностей и математическая статистика», используются при освоении следующих дисциплин: «Надежность систем защиты информации».

Тематический план дисциплины

	Трудоемкость по видам занятий, ч.				
Наименование раздела, (темы)	Лекции	Практи- ческие	Лабора- торные	СРСП	CPC
Раздел 1. Теория вероятностей					
Элементарные события. Событие и его частота.	1			2	2
Вероятность. Вероятностное пространство.	1			2	2
Последовательность испытаний. Схема Бернулли.	1		2	2	2
Предельные теоремы в схеме Бернулли.	1		2	2	2
Случайные величины. Случайные векторы.	1			2	2
Числовые характеристики случайных величин.	1		3	2	2
Характеристические функции.	1			2	2
Законы больших чисел. Центральная предельная теорема.	1		2	2	2
Раздел 2. Математическая стати-					
стика.					
Основные понятия и элементы выборочной теории.	1			2	2
Оценивание неизвестных параметров распределений.	1		2	2	2
Интервальное оценивание.	1			2	2
Проверка статистических гипотез.	1		2	2	2
Регрессионный анализ.	1			2	2
Раздел 3. Элементы теории слу-					
чайных процессов.					
Дискретные цепи Маркова.	1		2	2	2
Случайные процессы.	1			2	2
ИТОГО:	15		15	30	30

Перечень лабораторных занятий

- 1. Последовательность испытаний. Схема Бернулли.
- 2. Предельные теоремы в схеме Бернулли.
- 3. Числовые характеристики случайных величин.
- 4. Законы больших чисел. Центральная предельная теорема.
- 5. Оценивание неизвестных параметров распределений.
- 6. Проверка статистических гипотез.
- 7. Дискретные цепи Маркова.

Темы контрольных заданий для СРС

- 1. Последовательность испытаний. Схема Бернулли.
- 2. Предельные теоремы в схеме Бернулли.
- 3. Числовые характеристики случайных величин.
- 4. Законы больших чисел. Центральная предельная теорема.
- 5. Проверка статистических гипотез.
- 6. Дискретные цепи Маркова.

Критерии оценки знаний студентов

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100%.

График выполнения и сдачи заданий по дисциплине

трифик вв	Г	і заданий по дисци			1	Б
Вид контроля	Цель и содер- жание задания	Рекомендуемая литература	Продолжи- тельность вы- полнения	Форма контроля	Срок сдачи	Бал лы
Лабораторная работа №1	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	3 неде-	4
Лабораторная работа №2	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	4 неде- ля	4
Лабораторная работа №3	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	6 неде- ля	4
Аттестацион- ный модуль №1	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 занятие	рубежный	7 неде- ля	10
Отчёт по СРСП	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	8 неде- ля	3
Лабораторная работа №4	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	8 неде- ля	4
Лабораторная работа №5	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	10 не- деля	4
Лабораторная работа №6	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	12 не- деля	4
Отчёт по СРСП	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	13 не- деля	5
Лабораторная работа №7	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	14 не- деля	3
Аттестацион- ный модуль №2	Проверка практических и теоретических	Вся основная и дополнительная литература	1 занятие	рубежный	14 не- деля	10

	навыков					
Отчёт по СРСП	Проверка практических и теоретических навыков	Вся основная и дополнительная литература	1 неделя	текущий	15 не- деля	5
Тестовое задание	Проверка теоретических навыков	Вся основная и дополнительная литература	2 часа	итоговый	в пери- од сес- сии	40
Всего						100

Политика и процедуры

При изучении дисциплины «Теория вероятностей и математическая статистика» прошу соблюдать следующие правила:

- 1 Не опаздывать на занятия.
- 2 Не пропускать занятия без уважительной причины, в случае болезни прошу представить справку, в других случаях объяснительную записку.
 - 3 В обязанности студента входит посещение всех видов занятий.
 - 4 Согласно календарному графику учебного процесса сдавать все виды контроля.
- 5 Пропущенные практические и лабораторные занятия отрабатывать в указанное преподавателем время.
- 6 Быть терпимыми, открытыми, откровенными и доброжелательными к сокурсникам и преподавателям.

Список основной литературы

- 1. А.А.Боровков. Теория вероятностей. М. Наука, 2002.
- 2. Г.П. Климов. Теория вероятностей и математическая статистика. М., МГУ, 2004.
- 3. В.С. Пугачев. Теория вероятностей и математическая статистика. М., Наука, 2008.
- 4. Б.А. Севастьянов. Курс теории вероятностей и математической статистики. М.: Наука, 2010.
- 5. В.Феллер. Введение в теорию вероятностей и ее приложения. (том 1 и 2). М.:Мир,
- 6. В.П. Чистяков. Курс теории вероятностей. М.: Наука, 2003.
- 7. Г.Крамер. Математические методы статистики. М.: Мир, 2009.
- 8. Г.И. Ивченко, Ю.И. Медведев. Математическая статистика. М.: Высш.школа, 2011.
- 9. Н.В. Смирнов, И.В. Дунин Барковский. Курс теории вероятностей и математической статистики для технических приложений. М., 2013.
- 10. Севастьянов Б.А., Чистяков В.П., Зубков А.М. Сборник задач по теории вероятностей М.: Наука, 2014.
- 11. Прохоров А.В., Ушаков В.Г., Ушаков Н.Г. Задачи по теории вероятностей М.: Наука, 2006.

Список дополнительной литературы

- 12. Боровков А.А. Математическая статистика. М.: Наука, 2010
- 13. Леман Э.Л. Проверка статистических гипотез. М.: Наука, 2008.
- 14. Ширяев А.Н. Вероятность. М.:Наука, 2009.
- 15. Уилкс С. Математическая статистика. М., 2012
- 16. Н.Ақынбай. Ықтималдықтар теориясы Алматы: Қазақ университеті, 2005.

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина TVMS 3212 «Теория вероятностей и математическая статистика»

Модуль МО 19 «Математическое обеспечение»

Γα	ос. изд. лиц. №50 от 31.03.04	
Подписано к печати2	0_г. Формат 90х60/16	Тираж экз
Объем уч. изд. л.	Заказ №	Цена договорная.
100027 Издатель	 ьство КарГТУ Караганда, Бульва	р Мира, 56