Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

Утверждаю	
Председател	ть Ученого совета
Ректор, ака	демик НАН РК
Газалиев А	.M.
«»	20Γ.

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ МАГИСТРАНТА (SYLLABUS)

Дисциплина ChMRSK 5306 «Численные методы расчета строительных конструкций» модуль SK 4 «Строительные конструкции»

Специальность 6М072900 «Строительство»

Институт Архитектуры и строительства

Кафедра «Строительные материалы и технологии»

Предисловие

Программа обучения по дисциплине для магистранта (syllabys) Разработана: канд. техн. наук, доцентом Касимовым А.Т. Жакулина А.А. – к.т.н., доц. кафедры СМиТ

Протокол №	OT «	<u> </u>		20	Γ.		
Зав. кафедрой			«	>>>		20 г.	
	(подпись	S)					
ства							
Протокол №	ОТ ≪	>>		20	_ Γ.		
11po10koji 3\2							
Председатель		<u> </u>			20_	Γ.	

Сведения о преподавателе и контактная информация

Касимов Абай Тусупбекович, кандидат технических наук, доцент кафедры СМиТ

Кафедра «СМиТ» находится в 1-ом корпусе КарГТУ (Бульвар Мира 56), аудитория I-110, 1-111, контактный телефон 56-75-81.

Трудоемкость дисциплины

	Кол	Вид занятий				Кол	Общее	Фор	
Сем	во	количество	контактны	х часов	кол-	все-	во	кол-	ма
естр	кре дит ов / ECTS	лекции	практи ческие занятия	лабора торные занятия	во часов СРМП	го час- ов	час- ов СРМ	во часов	конт ро ля
2	4/6	60	-	-	60	120	60	180	Экза мен

Характеристика дисциплины

Дисциплина «Численные методы расчета строительных конструкций» входит в цикл обязательных дисциплин, изучающей методы расчета элементов зданий и сооружений на прочность, жесткость и устойчивость.

Цель дисциплины

Целью преподавания дисциплины «Численные методы расчета строительных конструкций» является изучение теоретических основ проектирования зданий и сооружений, методов механики деформируемого твердого тела, численных и вероятностных методов расчета строительных конструкций.

Задачи дисциплины

Задачи дисциплины следующие: дать магистрантам четкое представление о характерных особенностях дисциплины, ее связях с другими дисциплинами, о расчетных и реальных схемах сооружений и методах статического расчета их несущих конструкций, а также численного расчета строительных конструкций.

В результате изучения данной дисциплины студенты должны:

Иметь представление:

- о расчетных схемах сооружений;
- о методах определения усилий в статически определимых и статически неопределимых стержневых системах.
- о современном состоянии науки о надежности и безопасности сооружений, методов механики деформируемого твердого тела, численных методов расчета.

Знать:

- основные методы расчета сооружений и их элементов на статические нагрузки.
- методы расчета на надежность, численные и аналитические методы расчета.

Уметь:

- свободно ориентироваться в методах расчета
- формулировать и решать задачи
- выбирать необходимые методы решения задач
- обрабатывать полученные результаты

Пререквизиты

Для изучения данной дисциплины необходимо знание следующих дисциплин:

Дисциплина	Наименование разделов (тем)
Высшая	Аналитическая геометрия, векторная алгебра, дифферен-
математика	циальное и интегральное исчисления, ряды, теория вероят-
	ностей, математическая статистика
Физика	Механика твердого тела
Инженерная	Теоретическая механика (аксиомы статики и условия рав-
механика	новесия плоской системы сил), динамика; сопротивление
	материалов (весь курс)

Постреквизиты

Знания, полученные при изучении дисциплины «Численные методы расчета строительных конструкций» используются при освоении следующих дисциплин:: «Теория проектирования объектов строительства», «Основы инженерной теории надежности сооружений», «Монтаж и реконструкция специальных сооружений», «Геомеханика»

Тематический план дисциплины

	Трудоемкость по видам занятий, ч.				
Наименование раздела, (темы)		прак-	лабора		
	лек-	ТИ	тор-	СРМП	CPM
	ции	ческие	ные		
1	2	3	4	5	6
1. Основные понятия МКЭ	2	-	-	2	2
2. Основные этапы практической	2	-	-	2	2
реализации МКЭ.					
3. Конечные элементы.	2	-	-	2	2

4. Построение сетки конечных элементов.	2	-	-	2	2
5. Граничные условия.	2	-	-	2	2
6. Точность результатов.	2	-	-	2	2
7. Линейный упругий элемент. Матрица жесткости.	2	-	-	2	2
8. Стержневой элемент.	2	-	-	2	2
9. Матрица жесткости стержневого элемента.	2	-	-	2	2
10. Функции формы конечного элемента	2	-	ı	2	2
11. Энергия деформации конечного элемента.	2	-	-	2	2
12. Вывод матрицы жесткости конечного элемента.	2	-	-	2	2
13. Учет распределенной нагрузки для стержневого элемента.	2	-	-	2	2
14.Преобразование смещений.	2	-	-	2	2
15. Матрица жесткости стержневого элемента в глобальной системе координат.	2	-	1	2	2
16. Балочный элемент.	2	-	-	2	2
17. Функции формы балочного элемента	2	-	-	2	2
18.Матрица жесткости балочного элемента.	2	-	-	2	2
19. Учет распределенной нагрузки в балочном элементе	2	-	-	2	2
20. Устойчивость стержней	2	_	-	2	2
21.Конечный элемент сжато-изогнутого стержня.	4	-	-	4	4

22. Свободные колебания балок	2	-	-	2	2
23. Конечный элемент колеблющегося стержня.	2	-	-	2	2
24. Математическая модель мембраны.	2	-	-	2	2
25. Функции формы конечного элемента мембраны.	2	-	-	2	2
26. Приведение распределенной нагрузки конечного элемента мембраны к узловым силам.	1	-	-	1	1
27. Матрица жесткости прямо- угольного конечного элемента мембраны	1	-	-	1	1
28. Матрица внутренних усилий КЭ мембраны.	1	-	ı	1	1
29. Основные характеристики КЭ мембраны.	1	-	ı	1	1
30. Функции формы конечного элемента мембраны в уточненной постановке.	1	-	1	1	1
31. Приведение распределенной нагрузки конечного элемента мембраны к узловым силам в уточненной постановке.	1	-	-	1	1
32. Матрица жесткости прямоугольного конечного элемента мембраны в уточненной постановке.	1	-	-	1	1

33. Матрица внутренних	1	-	-	1	1
усилий КЭ мембраны в уточненной постановке.					
34. Треугольный конечный элемент мембраны, функции формы.	1	-	-	1	1
35. Приведение распределенной нагрузки треугольного конечного элемента мембраны к узловым силам. Координаты центра тяжести КЭ.	1	-	-	1	1
36. Матрица жесткости тре- угольного конечного элемента мембраны. Основная зависи- мость	1	-	1	1	1
37. Площадь поверхности функции прогибов КЭ треугольной формы. Внутренние усилия треугольного КЭ.	1	-	-	1	1
38.Математическая модель изгиба пластины.	2	-	-	2	2
39. Функция прогибов конечного элемента (КЭ) прямоугольной формы.	2	-	1	2	2
40. Приведение распределенной нагрузки конечного элемента прямоугольной формы к узловым силам	2	-	1	2	2
41. Деформированное состояние прямоугольного конечного элемента пластины	2	-	-	2	2
42. Напряженное состояние прямоугольного конечного элемента пластины.	2	-	-	2	2

43.Основная зависимость и матрица жесткости прямоугольного конечного элемента пластины.	2	-	-	2	2
44. Конечный элемент изгибаемой пластины с учетом поперечных сдвигов.	2	-	-	2	2
45. Функция прогибов и узловые силы от распределенной нагрузки конечного элемента с учетом поперечных сдвигов.	2	-	-	2	2
Итого	60			60	60

Практические занятия не предусмотрены. Тематический план самостоятельной работы магистранта с преподавателем

Наименование темы СРМП	Цель занятия	Форма проведения занятия 3	Содер- жание занятия	Рекомен- дуемая литера- тура
1. Определение вероятности отказа по одному предельному состоянию интегрированием функции надежности.	Получение навыков определения вероятности отказов	Реше ние задач	Решение задач по заданию преподава- теля	[3], [1]
2. Определение вероятности отказа по характеристике безопасности.	Получение навыков в определении отказа	Реше ние задач	По заданию преподавателя	[5]
3. Определение вероятности от- каза (надежности) конструкций по нескольким предельным со- стояниям.				
4. Определение вероятности отказа железобетонных конструкций.	Освоить определение вероятности отказа с железобетонными кон-	Для за- данной рамы, колонны	По заданию преподава- теля	[1],[3],[5]

	струкциями			
5. Определение вероятности отказа систем.	Закрепление теории и практических навыков	Для за- данной рамы	По заданию преподавателя	[3],[5], [6],[8]
6. Определение вероятности отказа при последовательном, параллельном и смешанном соединениях.	Закрепление тео- рии и практи- ческих навы- ков	Для за- Данной рамы	По заданию преподава- теля	[3],[4], [9],
7. Расчет упругих систем на основе принципа вариации перемещений.	Получение навыков в определении усилий в стержнях	Реше ние задач	Решение задач по заданию преподавателя	[4], [10]
8. Расчет пластин методом сеток, Бубнова-Галеркина.	Получение навыков в чис-ленных мето-дах	Для за- данного пластика	По заданию преподавателя	[4], [10]
9. Использование принципа Кастилиано для расчета статически неопределимых систем.	Закрепление теории и практических навыков	Для за- данных арок	По заданию преподава- теля	[4],[10]
10. Расчет рам методом конечного элемента.	Закрепление тео- рии и практи- ческих навы- ков	Для за- данных рам	По заданию преподавателя	[4],[5], [10]
11.Расчет с использованием ЭВМ.	Получение навыков в определении усилий и напряжений в стержнях пространственной рамы	Для за- данных ферм	По заданию преподава- теля	[4],[10]
Всего -60 часов				

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100% в соответствии с таблицей.

Оценка по буквенной систе-	баллы	%-ное	Оценка по традицион-
ме		содержание	ной системе
А цифровой эквивалент	4,0	95-100	отлично
A-	3,67	90-94	
B+	3,33	85-89	
В	3,0	80-84	хорошо
B-	2,67	75-79	
C+	2,33	70-74	
С	2	65-69	удовлетворительно
C-	1,67	60-64	
D+	1,33	55-59	
D	1,0	50-54	
F	0	0-49	неудовлетворительно

Оценка «А» (отлично) выставляется в том случае, если магистрант в течение семестра показал отличные знания по всем программным вопросам дисциплины, а также по темам самостоятельной работы, регулярно сдавал рубежные задания, проявлял самостоятельность в изучении теоретических и прикладных вопросов по основной программе изучаемой дисциплины, а также по внепрограммным вопросам.

Оценка «А-» (отлично) предполагает отличное знание основных законов и процессов, понятий, способность к обобщению теоретических вопросов, регулярную сдачу рубежных заданий по аудиторной и самостоятельной работе.

Оценка «В+» (хорошо) выставляется в том случае, если магистрант показал хорошие и отличные знания по вопросам дисциплины, регулярно сдавал семестровые задания в основном на (отлично) и некоторые на (хорошо).

Оценка «В» (хорошо) выставляется в том случае, если магистрант показал хорошие знания по вопросам, раскрывающим основное содержание конкретной темы дисциплины, а также темы самостоятельной работы, регулярно сдавал семестровые задания на «хорошо» и «отлично».

Оценка «В-» (хорошо) выставляется в том случае, если он хорошо ориентируется в теоретических и прикладных вопросах дисциплины как по аудиторным, так и по темам СРС, но нерегулярно сдавал в семестре рубежные задания и имел случаи пересдачи семестровых заданий по дисциплине.

Оценка «С+» (удовлетворительно) выставляется магистранту в том случае, если он владеет вопросами понятийного характера по всем видам ауди-

торных занятий и СРС, может раскрыть содержание отдельных модулей дисциплины, сдает на «хорошо» и «удовлетворительно» семестровые задания.

Оценка «С» (удовлетворительно) выставляется магистранту в том случае, если он владеет вопросами понятийного характера по всем видам аудиторных занятий и СРС, может раскрыть содержание отдельных модулей дисциплины, сдает на «удовлетворительно» семестровые задания.

Оценка «С-» (удовлетворительно) выставляется магистранту в том случае, если студент в течение семестра регулярно сдавал семестровые задания, но по вопросам аудиторных занятий и СРС владеет только общими понятиями и может объяснить только отдельные закономерности и их понимание в рамках конкретной темы.

Оценка «D +» (удовлетворительно) выставляется магистранту в том случае, если он нерегулярно сдавал семестровые задания, по вопросам аудиторных занятий и СРС владеет только общими понятиями и может объяснить только отдельные закономерности и их понимание в рамках конкретной темы.

Оценка «D» (удовлетворительно) выставляется магистранту в том случае, если он нерегулярно сдавал семестровые задания, по вопросам аудиторных занятий и СРС владеет минимальным объемом знаний, а также допускал пропуски занятий.

Оценка «F» (неудовлетворительно) выставляется тогда, когда магистрант практически не владеет минимальным теоретическим и практическим материалом аудиторных занятий и СРС по дисциплине, нерегулярно посещает занятия и не сдает вовремя семестровые задания.

Рубежный контроль проводится на 7-й и 14-й неделях обучения и складывается исходя из следующих видов контроля:

Вид контроля	%-ое содер	Академический период обучения, неделя							Ито го,								
	жание	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	%
Посещае мость	0,4	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	6
Конспекты лекций	2						2							2			4
Контрольные задания для СРМ	4,6					6					4				4		14
Рубежный контроль. Модули	10							10							10		20
Контроль ные работы	8						8							8			16

экзамен												40
	40											
Всего				6	10	10		4		10	14	100

Политика и процедуры

При изучении дисциплины следует соблюдать следующие правила:

- 1 Не опаздывать на занятия.
- 2 Не пропускать занятия без уважительной причины, в случае болезни прошу представить справку, в других случаях объяснительную записку.
 - 3 В обязанности магистранта входит посещение всех видов занятий.
- 4 Согласно календарному графику учебного процесса сдавать все виды контроля.
- 5 Пропущенные практические занятия отрабатывать в указанное преподавателем время.
 - 6 Беречь материальные ценности университета.
 - 7 Соблюдать чистоту в аудиториях.
- 8 Быть терпимыми, открытыми, откровенными и доброжелательными к сокурсникам и преподавателям.

Учебно-методическая обеспеченность дисциплины

			Издатель	Колич	нество
Ф.И.О. автора	Hav	менование учебно-методиче	ство, год из-	экземі	ппяров
	ско	й литературы	дания	В	
		1 21		биб-	
				лио-	
				теке	
		Основная литератур	a		
1. Ржаницин А.	Р.	Теория расчета строитель-	М.: Стройиз-	3	1.
		ных конструкций на	дат, 1978		Ржа-
		надежность.			ни-
					цин
					A.P.
2. Болотин В.В	•	Методы теории вероятно-	М.: Стройиз-	2	2. Бо-
		стей и теории надежности	дат, 1982		лотин
		в расчетах сооружений.			B.B.
3. Кудзис А.Т.		Оценка надежности желе-	М.: Вильнюс,	13	3.
		зобетонных конструкций.	1985		Куд-
					зис
					A.T.
4. Кисилев В.А		Строительная механика.	М.: Стройиз-	5	4. Ки-

		дат, 1980		силев В.А.
	Дополнительная литера	атура		
5 Аугусти Г. и др.	Вероятностные методы в строительном проектировании.	М.: Стройи- здат, 1988	4	5 Ау- густи Г. и др.
6 Авиром Л.С.	Надежность конструкций сборных зданий и сооружений.	М.: Стройиз- дат, 1981	3	6 Ави- ром Л.С.
7. Лужин О.В. и др.	Основы расчета строи- тельных конструкций на надежность.	М.: Стройиз- дат, 1981	1	7. Лу- Лу- жин О.В. и др.
8 Райзер В.Д.	Методы теории надежност в задачах нормирования расчетных параметров строительных конструкций.	М.: Стройиз- дат, 1986	1	8 Рай- Рай- зер В.Д.
9 Шпете Г.	Надежность строительных конструкций.	М.: Стройиз- дат, 1994	10	9 Шпе- те Г.
10 Смирнов А.Ф.	Строительная механика. Стержневые системы.	М.: Стройиз- дат, 1981	8	10 Смир нов А.Ф.
11 Барабащ М.С. и др.	Лира 9.4 Примеры решения и проектирования. Учебное пособие	Киев, изда- тельство Факт, 2005		11 Бара- бащ М.С. и др.

2 График выполнения и сдачи заданий по дисциплине

	papin ssinouncini ii ega	111 300A0111111 110	, 4		
Вид		Рекомен	Продолжи		
конт	Цель и содержание зада-	дуемая	тельность	Форма	Срок
роля	ния	литера	выполне-	контроля	сдачи
РГР		тура	ния		

№ 1	Растяжение (сжатие) бруса	[2] кон- спекты лекций	три недели	Текущий	5-ая неделя
№2	Расчет балочной кон- струкции на изгиб	[1] кон- спекты лекций	три недели	Текущий	6-ая неделя
№3	Расчет балочной кон- струкции на свободные колебания и устойчи- вость	[1] кон- спекты лекций	Пять недель	Рубеж- ный	7-ая неделя
№4	Расчет мембраны	[3] кон- спекты лекций	Шесть недель	Текущий	10-ая неделя
Сдача атте- стаци- онного мате- риала	Проверка усвоения ма- териала дисциплины	[1], [4], [10], [11]	1 контакт- ный час	Рубеж- ный	14-ая неделя
Экза-	Проверка усвоения ма- териала дисциплины	Весь перечень основной и дополнительной литературы	Четыре контактных часа	Итого- вый	В период сессии

Вопросы для самоконтроля

- 1. Основные понятия МКЭ
- 2. Основные этапы практической реализации МКЭ.
- 3. Конечные элементы.
- 4. Построение сетки конечных элементов.
- 5. Граничные условия.
- 6. Точность результатов.
- 7. Линейный упругий элемент. Матрица жесткости.
- 8. Стержневой элемент.
- 9. Матрица жесткости стержневого элемента.
- 10. Функции формы конечного элемента.
- 11. Энергия деформации конечного элемента.
- 12.Вывод матрицы жесткости конечного элемента.
- 13. Учет распределенной нагрузки для стержневого элемента.

- 14.Преобразование смещений.
- 15. Матрица жесткости стержневого элемента в глобальной системе координат.
- 16.Балочный элемент.
- 17. Функции формы балочного элемента.
- 18. Матрица жесткости балочного элемента.
- 19. Учет распределенной нагрузки в балочном элементе.
- 20. Устойчивость стержней.
- 21. Конечный элемент сжато-изогнутого стержня.
- 22. Свободные колебания балок.
- 23. Конечный элемент колеблющегося стержня.
- 24. Математическая модель мембраны.
- 25. Функции формы конечного элемента мембраны.
- 26. Приведение распределенной нагрузки конечного элемента мембраны к узловым силам.
- 27. Матрица жесткости прямоугольного конечного элемента мембраны.
- 28. Матрица внутренних усилий КЭ мембраны.
- 29.Основные характеристики КЭ мембраны.
- 30. Функции формы конечного элемента мембраны в уточненной постановке.
- 31. Приведение распределенной нагрузки конечного элемента мембраны к узловым силам в уточненной постановке.
- 32. Матрица жесткости прямоугольного конечного элемента мембраны в уточненной постановке.
- 33. Матрица внутренних усилий КЭ мембраны в уточненной постановке.
- 34. Треугольный конечный элемент мембраны, функции формы.
- 35.Приведение распределенной нагрузки треугольного конечного элемента мембраны к узловым силам. Координаты центра тяжести КЭ.
- 36. Матрица жесткости треугольного конечного элемента мембраны. Основная зависимость.
- 37.Площадь поверхности функции прогибов КЭ треугольной формы. Внутренние усилия треугольного КЭ.
- 38. Математическая модель изгиба пластины.
- 39. Функция прогибов конечного элемента (КЭ) прямоугольной формы.
- 40.Приведение распределенной нагрузки конечного элемента к узловым силам.
- 41. Деформированное прямоугольного конечного элемента пластины.
- 42. Напряженное состояния прямоугольного конечного элемента пластины.
- 43.Основная зависимость и матрица жесткости прямоугольного конечного элемента пластины.
- 44. Конечный элемент изгибаемой пластины с учетом поперечных сдвигов.

- 45. Функция прогибов и узловые силы от распределенной нагрузки конечного элемента с учетом поперечных сдвигов.
- 46. Линейный плоский треугольный элемент.
- 47. Линейный плоский треугольный элемент в локальной системе координат.
- 48. Квадратичный треугольный элемент.
- 49. Линейный четырехугольный элемент.
- 50. Квадратичный четырехугольный элемент.
- 51.Стержневой элемент, работающий на кручение.
- 52. Криволинейные конечные элементы.
- 53.Основы теории пластичности.
- 54. Модели упругопластического анализа линейных балок.
- 55.Способ полной пластификации поперечного сечения.
- 56.Структурные связи. Условия равновесия.
- 57. Элемент с линейной интерполяцией перемещения и вращательное движение.
- 58.Способ слоистой пластификации поперечного сечения.
- 59. Неразрешенные проблемы в методе конечных элементов.
- 60. Современная концепция алгоритма МКЭ.