The Ministry of Education and Science of the Republic of Kazakhstan Karaganda State Technical University

"Appro	ved''
Chairma	an of the Scientific Council,
Rector,	academician of NAS RK
A.M. Ga	zaliev
'''	2015_y.

WORKING CURRICULUM

Discipline OMSN 5306 "The main methods for the synthesis of nanomaterials"

TPN unit 03 "Technology nanomaterials"

Master's profile for specialty

6M070900 - "Metallurgy"

The educational program "Nanotechnologies in industry"

Faculty of Mechanical Engineering

Chair - "Nanotechnology and Metallurgy"

Foreword

Working curriculum is designed:	
PhD, associate professor of Andreyaschenko VA Discussed at a meeting of the department "NTM"	
Protocol number of " "2015 Head. Chair of V.Y. Kulikov " "	2015
Approved methodical bureau of engineering faculty	
Minutes № from "" 2015. Chairman T.M. Buzauova "" 20 (signature)	15.

The complexity of the discipline

Ī		Amount		Type of occupation				The			
				the number of contact hours		Number		Number	amount	form	
	Semester	of credits ECTS		Practical	Laboratory lessons	of hours	hours	of hours	of	of control	
	1	2	3	15	15	-	thirty	6 0	thirty	90	Course work

The purpose of discipline

The purpose of discipline "General methods for the synthesis of nanomaterials" is to prepare a student for research, production and technology, design and pedagogical activity in the synthesis of nanomaterials.

Problems of the discipline

Discipline objectives are: to give undergraduates knowledge of the methods of synthesis of highly dispersed nanoparticles of metals, alloys, compounds;

- The ability to give undergraduates to study the dimensional characteristics, evaluation of physical and mechanical characteristics of nanomaterials;
- Give undergraduates presentation on methods of mechanical, physical and chemical synthesis of nanomaterials;
- Practical skills to undergraduates at the choice of the method of synthesis and its use in industry.

As a result of studying the discipline masters should:

have an idea:

- The methods of mechanical, physical and chemical synthesis of nanomaterials;
- On how to study the characteristics of size,
- -o principles choice of the synthesis method depending on the specific application of the nanomaterial;

know:

- Methods for producing nanoscale materials;
- Mechanisms for the formation of nanoscale materials:
- Particular properties of nanoscale materials

be able to:

- Choose the method of synthesis of nanomaterials;
- Examine the dimensional characteristics of nanomaterials;
- Choose the equipment for the synthesis of nanomaterials.

Prerequisites

-

Postrekvizity

Module Technology nanopowders.

Thematic plan of discipline

Name of section (thomas)	The complexity of occupations, hours.					
Name of section (themes)	lectures	practical	laboratory	IWST	IWS	
1. 1. Introductory lecture. The objectives and content of the course. Common understanding of the methods of synthesis of nanomaterials	1	1	-	2	2	
2. Classification of methods for the synthesis of nanomaterials	2	2	-	2	2	

2.1. The main methods for the synthesis of nanomaterials "bottom - up".2.2 Basic methods for the synthesis of nanomaterials on a "top - down"					
3. Physical methods for the synthesis of nanomaterials 3.1. MBE. 3.2 Method evaporation followed by controlled growth in an inert atmosphere, and stabilized nanoparticles. 3.3 Methods of lithography.	2	2	-	8	8
 4. Chemical methods for the synthesis of nanomaterials. 4.1 The sol-gel synthesis method. 4.2 Synthesis in micelles. 4.3 Chemical precipitation. 4.4 The removal of one of the components of a heterogeneous system. 	2	2	-	8	8
5. Mechanochemical synthesis of nanomaterials.	2	2	-	2	2
6. The gas-phase synthesis of nanomaterials.	2	2	-	2	2
7. Mechanochemical detonation synthesis and electric explosion.	2	2		4	4
8. The formation and growth of nanoparticles.	2	2		2	2
TOTAL:	15	15	-	thirty	thirty

Thematic plan of independent work of a student with a teacher

Name of the theme IWST	The purpose of employment	Form of	The content of the job	Recommended reading
1	2	3	4	5
Theme 1. The function of materials derived technique of "bottom - up" and "top - down".	Increased knowledge on the subject	Conference	The study of the classification ofnanomaterials anddestination obtained by the methods of synthesis	[1 -6]
Theme 2. Physical methods of synthesis of nanomaterials.	Increased knowledge on the subject	Seminar	The study ofnanomaterial prepared by molecular beam epitaxy, nanolithography.Principle stabilize the nanoparticles obtained by evaporation followed by controlled growth in an inert	

			atmosphere.	
Theme 3. Methods for the synthesis of nanomaterials in the micelles.	Increased knowledge on the subject	Seminar	X Learning basicmethods of synthesis in the micelles and control the properties of nanomaterials.	[1- 4], [6]
Theme 4. The mechanisms and kinetics of the gasphase method for the synthesis of nanomaterials	Increased knowledge on the subject	Paperwork	The study of the mechanisms and kinetics of the gasphase method for the synthesis of nanomaterials	[1-11]
Subject 5. The structure of the materials obtained by the methods of the explosion.	Increased knowledge on the subject	Presentation	Truktury studymaterials obtained by the methods of the explosion, a comparative analysis of nanomaterials obtained by mechanochemical, detonation synthesis and an Electric	[1 13]
Topic 6 The formation and growth of nanoparticles	Increased knowledge on the subject	Presentation	Characteristics of the formation and growth of nanoparticles. Study of the effect on the degree of supercooling properties of the material teaches.	[1 -13]

Threads of control tasks for IWS

- 1 Individual job of choosing a method of synthesis for a particular nanomaterial.
- 2 individual tasks to study the characteristics of nanomaterials depending on the method of synthesis.

Timetable for implementation and delivery tasks for the discipline

I IIII CUBIC IOI	infection implementation and derivery tasks for the discipline						
Type of control	The purpose and content of the job	Recommended literature	Durations the performance	form of control	Deadline		
Interrogatories number 1	Securing the theoretical knowledge and practical skills	[1] [2] [3] [5] lecture notes	1 contact hour	Landmark	7- Week		
Report IWS (theme 1)	Control of theoretical knowledge.	[1], [2], [4], [5], [7]	7 weeks	Current	7 th week		
Interrogatories number 2	Securing the theoretical knowledge and practical skills	[1], [2], [6] lecture notes	1 contact hour	Landmark	14 th week		
Report IWS	Control of	[1], [2], [4],	7 weeks	Current	14 th		

(theme 2)	theoretical knowledge	[5], [7]			week
Exam	Checking the assimilation of the material discipline	The entire list of basic and additional literature	2 contact hours	Outcome	During the session,

Key references

- 1. Форстер. Нанотехнология, наука, инновации, возможности. –М.: Техносфера, 2008. 352с.
- 2. Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы, получение структуры и свойства. –М.: Академия, 2007, -398с.
- 3. Гусев А.И., Ремпель А.А. Нанокристаллические материалы М.: ФИЗМАТЛИТ, 2010. 224 с.
- 4. Явойский А.М. Нанотехнолгии и наноматериалы М., Наука, 2008 г., 365 с.
- 5. Р.А. Андриевский, А.В. Рагуля. Наноструктурные материалы. Учеб. пособие для высш. учеб. заведений. М.: Издательский центр «Академия», 2005.
- 6. Перспективные материалы/ под ред.проф. Д.Л.Мерсона. Уч.пособие. –М.:ТГУ, 2007. 468с.
- 7. Кормилицын О.П., Шукейло Ю.А. Механика материалов и структур нано и микротехники. М.: Академия, 2008, -224с.
- 8. Добаткин С.В. Лакишев Н.П. Перспективы получения и использования наноструктурный сталей//Всероссийская конференция по наноматериалов НАНО. 2007. Тезисы докладов. —Новосибирск, 2007.
- 9. Добаткин С.В. Наноматериалы. Объемные металлические нано и субмикрокристаллические материалы полученные интенсивной пластической деформацией. Уч.пособие/ Добаткин С.В. –М.:МИСиС, 2007. -36с.
- 10. Рыжонков Д.И. и др. Ультрадисперсные среды. Получение нанопорошков методом химического диспергирования и их св-ва. Учебное пособие/ Рыжонков Д.И., Левина В.В., Дзидзигури Е.Е. –М.: Изд-во МиСиС, 2006. -135с.
- 11. Кормилицын О.П., Шукейло Ю.А. Механика материалов и структур нано и микротехники. -М.: Академия, 2008, -224с.
- 12. Adéla Macháčková, Violetta Andreyachshenko, <u>Zuzana Klečková</u> Modeling of forming technologies based on SPD processes, LAP LAMBERT Academic Publishing, <u>2015-07-13</u>, <u>P. 124</u>.

Additional reading

- 13. Рыжонков Д.И. и др. Ультрадисперсные среды. Получение нанопорошков методом химического диспергирования и их св-ва. Учебное пособие/ Рыжонков Д.И., Левина В.В., Дзидзигури Е.Е. –М.: Изд-во МиСиС, 2006. -135с.
- 14. Соронин Г.М. Трибология сталей и сплавов. –М.: Недра, 2000. -316с.