Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

	УТВЕРЖДАЮ
Председатель ?	Ученого совета,
I	Ректор КарГТУ
	Газалиев А.М.
	2016 г.

ATTOEDMENT A LO

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

ДисциплинаVSS 4321 Вычислительные системы и сети Модуль RASSA 13
Программные и аппаратные средства систем автоматизации
Специальность 5В070200 – «Автоматизация и управление»
Факультет энергетики, автоматики и телекоммуникаций
Кафедра автоматизации производственных процессов

2016

Рабочую учебную программу разработал:

Крицкий Антон Борисович, старший преподаватель кафедры АПП

	Обсуждена на заседании каф	редры автоматизаг	ции производ	цственных
про	оцессов			
	Протокол № от «	<u> </u>	_2015 г.	
<u> </u>	Зав. кафедрой	Брейдо И.В.		
	Одобрена учебно-методичес	ским советом		_ факультета
	Протокол № от «_	»	_2015 г.	
« <u> </u>	Председатель	Тенчурина А.Р.		

Крицкий Антон Борисович, старший преподаватель кафедры АПП КарГТУ.

Кафедра АПП им. В.Ф.Бырьки находится в главном корпусе КарГТУ, 131 аудитория, контактный телефон: 56-51-84 (кафедра), 56-53-25 (4 корпус 106 ауд.), электронный адрес преподавателя: ant55@mail.ru.

Трудоемкость дисциплины

	Вид занятий								
фī	CTB	колич	ество контак	тных часов	количе-		Коли-	Общее	
Семестр	\bigcirc		практиче-	лаборатор-	ство ча-	всего	чество	количе-	Форма
Cel	олич креди каз/Е	лекции	ские	ные	сов	часов	часов		контроля
	KC X	,	занятия	занятия	СРСП		CPC	СОВ	
	Форма обучения очная (4 г.)								
5	3	5	15	15	15	45	90	45	135
	Форма обучения очная сокращенная (3 г.)								
5	3	5	15	15	15	45	90	45	135

Характеристика дисциплины

Дисциплина "Вычислительные системы и сети" входит в цикл базовых дисциплин для студентов специальностей 5В070200 "Автоматизация и управление" в соответствии с ГОСО РК и, согласно учебного плана специальности, входит в число обязательных.

Цель дисциплины

Целью изучения данной дисциплины является изучение современных вычислительных сетей и систем и приобретение практических навыков решения профессиональных задач в среде современных информационных технологий для предметной области "Автоматизация технологических процессов и производств".

Задачи дисциплины

Задачи дисциплины: формировать у специалиста твердые основы знаний, высокую математическую культуру и практические навыки, достаточные для успешной производственной деятельности и позволяющие ему самостоятельно осваивать новые необходимые знания и достижения в области программирования и решения инженерных задач.

В результате изучения данной дисциплины студенты должны:

иметь представление: Об архитектуре и топологии многопроцессорных вычислительных систем.

Об основах сетевых технологий, аппаратном и программном обеспечении сетей.

знать:

Назначение, область применения и способы оценки производительности многопроцессорных вычислительных систем.

Архитектуры вычислительных систем.

Математические основы, способы организации и особенности проектирования высокопроизводительных процессоров.

Общие принципы построения вычислительных сетей.

Основы передачи дискретных данных.

Базовые технологии локальных сетей.

Построение локальных сетей по стандартам физического и канального уровней.

уметь:

Грамотно производить комплектацию и агрегатирование вычислительных систем и сетевого оборудования, осуществлять проектирование топологии локальной сети.

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих дисциплин (с указанием разделов (тем)):

Дисциплина	Наименование разделов (тем)
CT 2209	Логические устройства, компараторы, аналого-
Цифровая техник	цифровые и цифроаналоговые преобразователи
Inf 1117	Vетройство парсонального компьютара
Информатика	Устройство персонального компьютера
ATK 3317	
Автоматизация тех	Автоматизированные и автоматические производствен
нологических компле	ные линии
СОВ	

Постреквизиты

Знания, полученные при изучении дисциплины «Вычислительные системы и сети», используются при написании дипломной работы.

Тематический план дисциплины

темати теский план дисциплины	l .					
	Трудоемкость по видам занятий, ч.					
Наименование раздела, (темы)	лекции	практи-	лабора-	СРСП	CPC	
	,	ческие	торные			
.1 Введеение	1	1	1	-	-	
2. Организация компьютерных систем	1	-	-	-	-	

3. Организация компьютерных систем	1	-	-	-	-
4. Уровень микроархитектуры	1	-	-	-	-
5. Уровень архитектуры набора команд	1	-	-	-	-
6. Уровень архитектуры набора команд	1	-	-	-	-
7. Уровень операционной системы	1	-	-	-	-
8. Уровень ассемблера	1	-	-	-	-
9.лельные компьютерные архитектуры	1	-	-	-	-
10. От централизованных систем - к вычислительным сетям. Основные проблемы построения сетей	1	-	-	-	-
11. Модель взаимодействия открытых систем и проблемы стандартизации	1	-	-	-	-
12 Локальные и глобальные сети. Требования, предъявляемые к современным вычислительным сетям	1	3	-	3	3
13. Линии связи	1	3	-	3	3
14. Методы передачи дискретных данных на физическом уровне	1	3	-	3	3
15. Методы передачи данных канального уровня. Методы коммутации.	1	2	-	3	3
16 5азначение, область применения и спо- собы оценки производительности много- процессорных вычислительных систем . Архитектура вычислительных систем	-	2	-	3	3
17 Принципы построения коммуникационных сред. Математические основы, способы организации и особенности проектирования высокопроизводительных процессоров	-	2	-	3	3
17 Коммутаторы для многопроцессорных вычислительных систем. Требования к компонентам МВС	-	-		3	3
18. Кластеры и массивно-параллельные системы различных производителей	-	-		3	3
19. От централизованных систем - к вычислительным сетям. Основные проблемы построения сетей	-	-	2	3	3
20. Модель взаимодействия открытых си-	-	-	2	3	3

стем и проблемы стандартизации					
21. Локальные и глобальные сети. Требования, предъявляемые к современным вычислительным сетям	-	-	2	3	3
22. Линии связи	-	-	3	3	3
23. Методы передачи дискретных данных на физическом уровне	-	-	3	3	3
24. Методы передачи данных канального уровня. Методы коммутации.	-	-	3	3	3
ИТОГО:	15	15	15	45	45

Перечень практических (семинарских) занятий

- 1. Компьютерная арифметика. Двоичные числа.
- 2. Компьютерная арифметика. Числа с плавающей точкой.
- 3. Программирование на языке ассемблера
- 4. Многопроцессроные вычислительные системы. Зависмость производительности компьютера и приложений от числа процессоров.
- 5. Оперативная память вычислительных систем. Зависмость производительности компьютера и приложений от количества оперативной памяти.
- 6. Кабельные системы вычислительных сетей. Обжим кабеля на витой паре.

Методические указания по выполнению практических работ, содержащие тематику, планы практических занятий, рекомендуемую литературу, контрольные задания для СРС представлены в электронном варианте и указаны в списке основной литературы [11].

Перечень лабораторных занятий

- 1. Изучение особенностей функционирования локальной вычислительной сети со случайным методом доступа к моноканалу
- 2. Изучение особенностей функционирования локальной вычислительной сети с маркерным методом доступа к моноканалу
- 3. Исследование поведения характеристик надежности сети при введении в систему резервных элементов
- 4. Исследование вычислительных возможностей ЛВС и кластера.

График выполнения и сдачи заданий по дисциплине

Вид контроля	Цель и содержание за- дания	Рекомендуемая литература	Продол- жительность выполнения, ч.	Форма кон- троля	Срок сдачи
Лабора- торная работа № 1	Изучение особенностей функционирования локальной вычислительной сети со случайным методом доступа к моноканалу	Крицкий А.Б. Лабораторные работы по курсу "Вычислительные системы и сети"	4	Отчет по ла- бораторной работе (теку- щий кон- троль)	4 неделя обучения
Лабора- торная работа № 2	Изучение особенно- стей функционирова- ния локальной вычис- лительной сети с мар- керным методом до- ступа к моноканалу	Крицкий А.Б. Лабораторные работы по курсу "Вычислительные системы и сети"	4	Отчет по ла- бораторной работе (теку- щий кон- троль)	8 неделя обучения
Модуль N1 (те- кущий рубеж- ный кон- троль)	Контроль знаний по дисциплине и усвоения изученного материала. Ответы на контрольные вопросы по темам 11-14.	[1, 2,8,9,11,14,16,18,24]	0,75 час.	Письменный и устный опрос (ру-бежный контроль)	7 неделя обучения
Лабора- торная работа № 3	Проектирование систем логического управления технологическими процессами	Крицкий А.Б. Лабораторные работы по курсу "Вычислительные системы и сети"	4	Отчет по ла- бораторной работе (теку- щий кон- троль)	12 неде- ля обу- чения
Модуль N2 (те- кущий рубеж- ный кон- троль)	Контроль знаний по дисциплине и усвоения изученного материала. Ответы на контрольные вопросы по темам 11-14.	[1, 2,8,9,11,14,16,18,24]	0,75 час.	Письменный и устный опрос (ру- бежный контроль)	14 неде- ля обу- чения
Лабора- торная работа № 4	Исследование вычислительных возможностей ЛВС и кластера.	Крицкий А.Б. Лабораторные работы по курсу "Вычислительные системы и сети"	3	Отчет по ла- бораторной работе (теку- щий кон- троль)	15 неде- ля обу- чения
Экзамен	Проверка усвоения материала дисциплины	Весь список литера- туры	2час	Итоговый	В период сессии

Вопросы для самоконтроля

1. Чем можно объяснить тот факт, что глобальные сети появились раньше, чем локальные?

- 2. Поясните использование термина «сеть» в следующих предложениях:
 - о сеть нашего предприятия включает *сеть* Ethernet и *сеть* Token Ring;
 - о маршрутизатор это устройство, которое соединяет сети;
 - чтобы получить выход в Internet, необходимо получить у поставщика услуг Internet номер *сети*;
 - \circ в последнее время *IP-сети* становятся все более распространенными;
 - о гетерогенность корпоративной *сети* приводит к тому, что на первый план часто выходит проблема согласования *сетей*.
- 3. Всякое ли приложение, выполняемое в сети, можно назвать сетевым?
- 4. Что общего и в чем отличие между взаимодействием компьютеров в сети и взаимодействием компьютера с периферийным устройством?
- 5. Как распределяются функции между сетевым адаптером и его драйвером?
- 6. Поясните значения терминов «клиент», «сервер», «редиректор».
- 7. Назовите главные недостатки полносвязной топологии, а также топологий типа общая шина, звезда, кольцо.
- 8. Какую топологию имеет односегментная сеть Ethernet, построенная на основе концентратора: общая шина или звезда?
- 9. Какие из следующих утверждений верны:
 - А. разделение линий связи приводит к повышению пропускной способности канала;
 - В. конфигурация физических связей может совпадать с конфигурацией логических связей;
 - С. главной задачей службы разрешения имен является проверка сетевых имен и адресов на допустимость;
 - D. протоколы без установления соединений называются также дейтаграммными протоколами.
- 10. Определите функциональное назначение основных типов коммуникационного оборудования повторителей, концентраторов, мостов, коммутаторов, маршрутизаторов.
- 11.В чем отличие логической структуризации сети от физической?
- 12. Если все коммуникационные устройства в приведенном ниже фрагменте сети (рис. 1.34) являются концентраторами, то на каких портах появится кадр, если его отправил компьютер А компьютеру В? Компьютеру С? Компьютеру D?

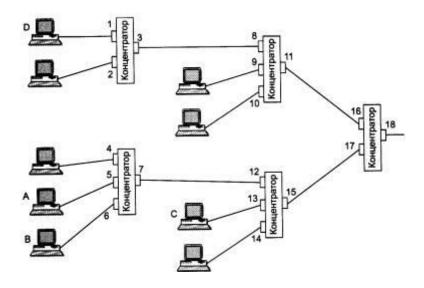


Рис. 1.34. Фрагмент сети

- 13. Если в предыдущем упражнении изменить условия и считать, что все коммуникационные устройства являются коммутаторами, то на каких портах появится кадр, посланный компьютером А компьютеру В? Компьютеру С? Компьютеру D?
- 14. Что такое «открытая система»? Приведите примеры закрытых систем.
- 15. Поясните разницу в употреблении терминов «протокол» и «интерфейс» применительно к многоуровневой модели взаимодействия устройств в сети.
- 16. Что стандартизует модель OSI?
- 17. Что стандартизует стек OSI?
- 18.Почему в модели OSI семь уровней?
- 19. Дайте краткое описание функций каждого уровня и приведите примеры стандартных протоколов для каждого уровня модели OSI.
- 20. Являются ли термины «спецификация» и «стандарт» синонимами?
- 21. Какая организация разработала основные стандарты сетей Ethernet и Token Ring?
- 22.Из приведенной ниже последовательности названий стандартных стеков коммуникационных протоколов выделите названия, которые относятся к одному и тому же стеку: TCP/IP, Microsoft, IPX/SPX, Novell, Internet, DoD, NetBIOS/SMB, DECnet.
- 23.В чем состоит отличие локальных сетей от глобальных на уровне служб? На уровне транспортной системы?
- 24. Назовите наиболее часто используемые характеристики производительности сети?
- 25. Что важнее для передачи мультимедийного трафика: надежность или синхронность?

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина VSS 4321 Вычислительные системы и сети

Модуль RASSA 13 Программные и аппаратные средства систем автоматизации Специальность 5В070200 – «Автоматизация и управление»

Гос. изд.	лиц. № 50 от 31.0	03.2004.	
Подписано к печати	2015 г. Формат	90х60/16. Тираж	_ экз.
Объем 1,0 уч. изд. л.	Заказ №	Цена договорна	R

100027 Издательство КарГТУ, Караганда, Бульвар Мира, 56