Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина ECE 2201 «Электротехника и основы электроники» Модуль ОЗД 5 «Общеобразовательных дисциплин» Специальность 5В071300 - «Транспорт, транспортная техника и

Факультет энергетики, автоматики и телекоммуникации Кафедра «Энергетические системы»

технологии»

Предисловие

Программа обучения по дисциплине для студента (syllabus) разработана по рабочему учебному плану 2015 года старшим преподавателем Двужиловой С.Н., преподавателем Байдильдиной Ж.Б.

Обсуждена на заседании Протокол № 3 от « 25	и кафедры «Энергетически »	ие системы»
•	«» одпись)	2015 г.
Протокол № 2 от « 28 »		2015 p
Председатель(по	«» Эдпись)	2015 г.
Согласована с кафедро	ой «»	
Зав.кафедрой		2015 г.

Сведения о преподавателе и контактная информация

Двужилова Светлана Николаевна - старший преподаватель кафедры ЭС

Кафедра «Энергетика» находится в главном корпусе КарГТУ, Бульвар Мира 56, аудитория 109, контактный телефон 565932, доп. 1027.

Трудоемкость дисциплины

		0			В	Вид занятий			0 ()	0	
	стр	CTB		коли	ичество контан		количест		ств	ee CTB	ма Оля
	Семес	Количес	ECT	лекции	практические занятия	лабораторные занятия		всего часов	Количе часов (Общ количе часс	Форма контрол
ĺ	3	3	5	15	15	15	45	90	45	135	Э

Характеристика дисциплины

Курс ЕСЕ 2201 " Электротехника и основы электроники " входит в цикл базовых дисциплин и является обязательной компонентой для студентов специальности 5В071300 — «Транспорт, транспортная техника и технологии».

Цель дисциплины

Целью преподавания дисциплины «Электротехника и основы электроники» является обучение студентов основам электротехники и электроники, необходимым при изучении специальных дисциплин и для практической деятельности по профессии.

Задачи дисциплины

Изучив дисциплину, студент должен: знать:

- основы теории электрических цепей постоянного, переменного и трехфазного токов;
 - основы теории магнитных цепей;
 - устройство и принцип действия трансформаторы и электрических машин;
- важнейшие положения метрологии и основные методы метрологических измерений, принцип действия, устройство, метрологические и эксплуатационные характеристики электроизмерительных средств;
- элементную базу современных электронных устройств, характеристики и параметры полупроводниковых приборов и интегральных схем, общие правила эксплуатации полупроводниковых приборов и интегральных схем;
 - основы цифровой электроники и микропроцессорных средств; уметь:
- применять основные законы и соотношения электрических цепей постоянного, переменного и трехфазного токов для их анализа и расчета;

- читать электрические схемы и понимать назначение основных узлов электрооборудования;
- произвести измерения основных электрических величин; оценивать погрешность измерения и проводить поверку электроизмерительных приборов; выбрать полупроводниковый прибор и интегральную схему для работы в электронных схемах, пользуясь справочной литературой.

Иметь представление:

- об измерительных системах;
- об основных принципах построения электронных схем на полупроводниковых приборах;
- о применении электрического и электронного оборудования по профилю специальности.

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих дисциплин (с указанием разделов (тем)):

Дисциплина	Наименование разделов (тем)				
1. Математика 1	Дифференциальные и интегральные				
2. Математика 2	уравнения. Символический метод.				
3.Физика 1	Электростатика, электромагнитное поле,				
4. Физика 2	электрические цепи.				

Постреквизиты

Знания, полученные при изучении дисциплины ЕСЕ 2201 «Электротехника и основы электроники» используются при освоении следующих дисциплин: «Теория машин и механизмов», «Детали машин».

Тематический план дисциплины

	Трудоемкость по видам занятий, час.				
Наименование раздела, (темы)	лекции	Практи- ческие	Лабора- торные	СРСП	CPC
1. Основные понятия электрических цепей: Источники и приемники электрической энергии. Электрическая цепь. Основные понятия и элементы электрической цепи. ЭДС, потенциал, напряжение, сила тока, электрическое сопротивление, мощность; ветвь, узел, контур. Схемы замещения. Схемы замещения. Режимы работы электрических цепей. Пассивный и активный двухполюсники. Электрические цепи постоянного тока. Электрические цепи синусоидального тока. Электрические цепи трехфазного тока	3			10	1
2.Электрические цепи постоянного тока: Определение постоянного тока.	4			10	1

		T	1	1	1
Неразветвленные и разветвленные					
электрические цепи с одним источником					
ЭДС. Эквивалентное сопротивление					
разветвленных электрических цепей.					
Законы электрических цепей.					
Энергетический баланс в электрических					
цепях. Анализ электрического состояния					
неразветвленной и разветвленной					
электрических цепей с несколькими					
источниками ЭДС путем					
непосредственного применения законов					
Кирхгофа. Методы расчета электрических					
цепей					
3.Электрические цепи синусоидального					
тока: Электрические цепи					
синусоидального тока. Принцип действия					
простейшего генератора синусоидальной					
1 1 7					
ЭДС. Основные понятия и определения, характеризующие синусоидальные ЭДС,					
ток и падение напряжения. Мгновенное,					
амплитудное, среднее и действующее					
значения, период и частота, начальная					
фаза. Представление синусоидальных					
величин в виде функций и временных					
графиков вращающимися векторами на					
комплексной плоскости. Основные	_				
элементы цепи переменного тока.	5			15	1
Резистор, катушка индуктивности,					
конденсатор в цепи синусоидального тока.					
Законы Ома и Кирхгофа для цепи					
синусоидального тока. Последовательное и					
параллельное соединения резистора,					
катушки индуктивности и конденсатора.					
Уравнение электрического состояния.					
Векторные и топогра-фические диаграммы.					
Треугольники напряжений, сопротивлений,					
мощностей. Резонанс напряжений и токов,					
условия их возникновения и практическое					
значение. Основы символического метода					
расчета цепей переменного тока.					
4. Электрические цепи трехфазного тока:					
Электрические цепи трехфазного тока:					
Принцип действия генератора трехфазной					
ЭДС. Различные схемы соединения					
приемников электрической энергии.					
Симметричный режим работы трехфазной	2			10	2
цепи. Соотношения между фазными и	3			10	2
линейными токами и напряжениями.					
Мощность трехфазной цепи.					
Несимметричный режим работы					
трехфазной цепи. Векторные и					
топографические диаграммы.					
parpir resime Anar parinibi.	<u> </u>	l	l		İ

5. Магнитные цепи.					5
6. Трансформаторы.					5
7. Электрические машины.					10
8. Основы электропривода.					5
9. Электромагнитные устройства и устройства автоматики.					5
10. Электрические измерения.					5
11. Основы электроники.					5
Расчет электрических цепей постоянного тока.		5			
Расчет простых цепей переменного тока.		5			
Расчет электрических цепей переменного					
синусоидального тока символическим		5			
методом.					
Итого:	15	15	15	45	45

Перечень лабораторных занятий

- 1. Инструкция по применению программного обеспечения Elektronics Workbench (EWB) для выполнения лабораторного практикума по курсу «Электротехника».
- 2. Исследование электрического состояния цепей с линейными пассивными элементами при постоянном напряжении.
- 3. Непосредственное применение законов Кирхгофа для расчета электрической цепи.
- 4. Опытная проверка принципа наложения.
- 5. Элементы цепей переменного тока.
- 6. Последовательное соединение R-L-С-элементов.
- 7. Параллельное соединение R-L-С-элементов.
- 8. Трехфазные цепи при соединении нагрузки в «звезду».

Темы для практических занятий

- 1. Измерения в электрических цепях
- 2. Расчет простых цепей постоянного тока
- 3. Расчет сложных цепей постоянного тока
- 4. Расчет сложных цепей постоянного тока методом контурных токов
- 5. Расчет простых цепей синусоидального тока
- 6. Символический метод расчета цепей синусоидального тока.
- 7. Расчет трехфазных цепей

Темы контрольных заданий для СРС

- 1. Расчет электрической цепи постоянного тока с несколькими источниками электрической энергии.
- 2. Расчет сложной электрической цепи синусоидального тока с несколькими источниками электрической энергии

Критерии оценки знаний студентов

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100%.

Политика и процедуры

При изучении дисциплины «Электротехника» прошу соблюдать следующие правила:

- 1 Не опаздывать на занятия.
- 2 Не пропускать занятия без уважительной причины, в случае болезни прошу представить справку, в других случаях объяснительную записку.
 - 3 В обязанности студента входит посещение всех видов занятий.
- 4 Согласно календарному графику учебного процесса сдавать все виды контроля.
- 5 Пропущенные практические занятия отрабатывать в указанное преподавателем время.

График выполнения и сдачи заданий по дисциплине

Вид контроля	Цель и содержание задания	Рекоменду емая литература	Продолжит ельность выполнени я	Форма контроля	Срок сдачи	Балл
Лабора- торная работа № 1	Ознакомится с прямыми и косвенными и измерениями	[1, 2]	2 часа	Текущий	2 неделя	5
Лабора- торная работа № 2	Ознакомится со способами измерения параметров цепи с линейными пассивными элементами	[1, 2]	2 часа	Текущий	4 неделя	5
Лабора- торная работа № 3	Ознакомится со способами измерения параметров цепи с линейными	[1, 2]	2 часа	Текущий	6 неделя	5

	пассивными элементами					
Модуль	Письменно ответить на вопросы по темам 1-4	[1, 2,3,]	1 час	Рубежный	7 неделя	10
Лаборато рная работа № 4	Опытным путем проверить метод наложения при расчете электрических цепей	[2, 3,]	2 часа	Текущий	8 неделя	5
Лаборато рная работа № 5	Опытная проверка расчета параметров элементов цепей переменного тока	[2,3]	3 часа	Текущий	10 неделя	5
Лаборато рные работы №№ 6,7	Исследование резонанса напряжений и резонанса токов	[2, 3]	2 часа	Текущий	12 неделя	10
Лаборато рная работа № 8	Опытным путем проверить соотношения между фазными и линейными напряжения и токами	[2, 3]	2 часа	Текущий	14 неделя	5
Модуль	Письменно ответить на вопросы по темам 5-8	[1 - 6]	1 час	Рубежный	14 неделя	10
Экзамен	Проверка усвоения материала дисциплины	Весь перечень основной и дополнител ьной литературы	1 час	Итоговый	В период сессии	40

Примечание — номер рекомендуемой литературы, указанной в квадратных скобках, проставляется согласно нумерации списка основной и дополнительной литературы, предлагаемой в рабочей учебной программе (см. п.1).

Вопросы для самоконтроля

- 1. Электрической цепью называют?
- 2. Схемой замещения электрической цепи называют?
- 3. Узлом электрической цепи называют?
- 4. Ветвью электрической цепи называют
- 5. Последовательным соединением в электрической цепи называют?
- 6. Укажите неправильную запись комплекса синусоидального напряжения $u=282\sin(628t+30^{\circ})$?
 - 7. Как правильно записать комплекс синусоидального тока?
 - 8. Чему равна начальная фаза напряжения u=141sin(314t+10°)?

- 9. Какая из векторных диаграмм соответствует графикам двух синусоидальных электрических величин?
- 10.Построение векторных диаграмм в зависимости от характера нагрузки цепи.
- 11. Чему равен сдвиг фаз между напряжением и током в зависимости от нагрузки?
- 12. Чему равен сдвиг фазы тока относительно напряжения u=Umsinωt на зажимах активного сопротивления R?
- 13. Чему равен сдвиг фазы тока относительно напряжения u=Umsinωt на зажимах индуктивного сопротивления XL?
- 14. Чему равен сдвиг фазы тока относительно напряжения u=Umsinωt на зажимах индуктивного сопротивления XL?
- 15. Чему равен сдвиг фазы тока относительно напряжения u=Umsinωt на зажимах ёмкостного сопротивления XC?
- 16. Какое соотношение между фазными и линейными напряжениями (и токами) сети при соединении нагрузки в «звезду»? Что влияет на эти соотношения (характер нагрузки, симметричность нагрузки, наличие нейтрального провода). Роль нейтрального провода.
- 17. Какая нагрузка называется симметричной, несимметричной, равномерной, однородной?
- 18. Как определить ток в нейтральном проводе? При каких условиях он равен нулю?
- 19. Как проводят расчет фазных токов в четырехпроводной и трехпроводной системах?
- 20. Какова зависимость между линейными и фазными токами трехфазной нагрузки, соединенной в «треугольник»?
- 21. Как определяют фазные и линейные токи трехфазной нагрузки по заданному сопротивлению и напряжению?
- 22. Как произвести расчет токов в нагрузке при обрыве одного из линейных проводов?
- 23. Как рассчитать активную мощность трехфазной нагрузки при симметричном и несимметричном ее характере?

Список основной литературы

- 1. Теоретические основы электротехники. Бессонов Л.А. М.: Высшая школа.,5000.-580с.
- 2. Электротехника. Касаткин А.С. Немцов М.В. М.: Высшая школа.,5000.-460с.
- 3. Электротехника. Касаткин А.С. Немцов М.В. М.: Высшая школа.,5000.-578с.
- 4. Электротехника / Под ред. В.Г. Герасимова. М.: Высшая школа, 1985.

- 5. Борисов Ю. М., Липатов Д.Н. Общая электротехника. М.: Высшая школа,1974.
- 6. Евдокимов Ф.Е. Общая электротехника. -М.: Высшая школа, 2004.

Список дополнительной литературы

1. Лабораторный практикум по электротехнике, Электрические цепи. КарГТУ, 2002.

Мультимедийным обеспечением дисциплины является электронный учебник, сертифицированный на ЦЭТО Кар ГТУ.

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина ЕСЕ 2201 «Электротехника и основы электроники» Модуль ОЗД 5 «Общеобразовательных дисциплин» Специальность 5В071300 - «Транспорт, транспортная техника и технологии»

Факультет энергетики, автоматики и телекоммуникации Кафедра «Энергетические системы»

Гос. изд. лиц. № 50 от 31.03.2004.	
Подписано к печати 20г. Формат 90х60/16. Тираж	экз.
Объем уч. изд. л. Заказ № Цена договорная	
100027. Издательство КарГТУ, Караганда, Бульвар Мира, 56	