Министерство образования и науки Республики Казахстан Карагандинский государственный технический университет

«Утверждаю»
Председатель Ученого Совета,
Ректор КарГТУ
Газалиев А.М.

«____» _____ 2015 г.

ПРОГРАММА ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТА (SYLLABUS)

Дисциплина РРЕ 3318 «Переходные процессы в электроэнергетике» Модуль РРЕ 14 «Переходные процессы (режимы) в электроустановках» Специальность 5В071800 «Электроэнергетика» Факультет энергетики, автоматики и телекоммуникаций Кафедра «Энергетические системы»

Предисловие

Программа обучения по дисциплине для студента (syllabus) разработана: старшим преподавателем Баландиным В.С.

Обсуждена на засе,	дании каф	едры «	Энерг	етиче	ские систе	мы≫
Протокол №	от «				_2015 г.	
Зав. кафедрой	(подпис		<u> </u>			2015r.
Одобрена учебно-м	иетодичесн	ким сов	ветом (ФЭАТ	Γ	
Протокол №	от «		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2015 г.	
Председатель			«	>>		2015 г.

Сведения о преподавателе и контактная информация

Баландин Виталий Сергеевич, старший преподаватель кафедры ЭС Кафедра Энергетические системы находится в главном корпусе КарГТУ, Бульвар Мира 56, аудитория 109, контактный телефон 565932, доп. 127.

Трудоемкость дисциплины

	0			В	Вид занятий			9 ()	0	
dТ	CTB	S	коли	ичество контан				ств УРС	ee CTB	fа)ЛЯ
чес	гче дил	$C\Gamma$				количест	всего	иче	H S	рма трол
G G	оли кред	E(лекции	практические	лабораторные		часов	CH	06 лиг ча	но:
	Ke			занятия	занятия	СРСП		Ко.	KC	K
6	3	5	15	15	15	45	90	45	135	Экз

Характеристика дисциплины

Дисциплина «Переходные процессы в электроэнергетике» является компонентом по выбору цикла профилирующих дисциплин для бакалавров высших учебных заведений, обучающихся по специальности 5В071800 — Электроэнергетика.

Цель дисциплины

Дисциплина «Переходные процессы в электроэнергетике» ставит целью изучение роли переходных процессов в осуществлении технического процесса и повышении экономической эффективности промышленных предприятий.

Задачи дисциплины

В результате изучения данной дисциплины студенты должны: иметь представление о:

причинах возникновения переходных процессов и их физической сущности, проведении расчетов переходных процессов в любых системах электроснабжения как с целью правильного выбора электрооборудования, так и оценки его работы, а также с целью количественной оценки влияния переходных процессов на устойчивость энергетической системы.

знать:

основы теории переходных процессов, возникающих в энергосистеме и системе электроснабжения как при нормальной эксплуатации (включение и отключение нагрузок, источников питания, отдельных цепей и др.), так и в аварийных ситуациях (короткое замыкание, обрыв нагруженной цепи или отдельной ее фазы, выпадение синхронной машины из синхронизма и др.).

уметь:

производить расчет токов короткого замыкания в сетях напряжением до и выше 1000 B

приобрести практические навыки:

оценки влияния переходных процессов на устойчивость энергетической системы, и владеть принципами преобразования электрических схем систем электроснабжения

Пререквизиты

Для изучения данной дисциплины необходимо усвоение следующих дисциплин: «Теоретические основы электротехники I», «Теоретические основы электротехники II», «Физика», «Математика 1», «Математика 2».

Постреквизиты

Знания, полученные при изучении дисциплины «Переходные процессы в электроэнергетике», используются при освоении следующих дисциплин: «Проектирование электроснабжения предприятий», «Релейная защита и автоматика в системах электроснабжения».

Тематический план дисциплины

№		Тру	доемкость	по видам з	анятий, ч	
п/п	Наименование раздела, (темы)	лекции	практич еские	лаборато рные	СРСП	CPC
1	Расчет токов короткого замыкания	1			3	3
2	Расчетные условия коротких замыканий	1			3	3
3	Порядок вычисления токов при расчете трехфазных к.з. Система относительных единиц		2			
4	Регистрация и отображение тока трехфазного короткого замыкания			3		
5	Составление расчетной схемы	1			3	3
6	Трехфазное короткое замыкание в цепи питающей от генераторов без автоматического регулирования возбуждения (APB). Трехфазное короткое замыкание в цепи питающейся от генераторов с (APB)		2			
7	Трехфазное АПВ линии электропередачи с односторонним питанием			3		
8	Преобразование исходной схемы замещения в эквивалентную результирующую	1			3	3
9	Параметры элементов расчетных схем	1			3	3

10	D					
10	Расчет токов коротких замыканий	1			2	2
	в электроустановках переменного	1		-	3	3
	тока напряжением свыше 1 кВ					
11	Основные характеристики и		2			
	параметры синхронной машины		_			
12	Расчет апериодической					
	составляющей тока короткого	1			3	3
	замыкания					
13	Сверхпереходные ЭДС и					
	реактивности синхронной машины.		2			
	Схема замещения генератора с		2			
	демпферными контурами					
14	Определение угловых					
	характеристик $P(\delta)$, $Q(\delta)$, $U(\delta)$			3		
	синхронного генератора					
15	Расчет периодической					
	составляющей тока короткого					
	замыкания для произвольного	1			3	3
	момента времени					
16	Учет комплексной нагрузки при	_				
	расчете токов короткого замыкания	1			3	3
17	Учет изменения параметров					
1,	короткозамкнутой цепи				_	_
	при расчете токов короткого	1			3	3
	замыкания					
18	Замыкания в распределительных					
	сетях и системах		2			
	электроснабжения		_			
19	Определение предельного времени			_		
	отключения короткого замыкания			2		
20	Расчет токов короткого замыкания					
	в электроустановках переменного	1			3	3
	тока напряжением до 1 кВ	1				3
21	Электромагнитные переходные					
	процессы при нарушении		2			
	симметрии трехфазной цепи		_			
22	Анализ устойчивости					
	электрической системы при малых			2		
	возмущениях					
23	Методы расчета несимметричных					
	коротких замыканий	1			3	3
24	Учет комплексной нагрузки при					
	расчетах токов короткого	1			3	3
	замыкания	1				,
25	Применимость метода					
	симметричных доставляющих к					
	исследованию переходных		3			
	процессов					
26	Анализ устойчивости					
20	электрической системы при			2		
	больших возмущениях					
	OOMBIIIA DOSHYIQIIIAA	<u> </u>	<u> </u>	<u> </u>	1	l .

27	Применение ЭВМ для расчета	1			3	3
	токов короткого замыкания					
28	Расчет параметров схем замещения					
	прямой последовательности	1			3	3
	элементов электрических сетей					
	ИТОГО:	15	15	15	45	45

Перечень практических (семинарских) занятий

- 1.Порядок вычисления токов при расчете трехфазных к.з. Система относительных единиц
- 2. Трехфазное короткое замыкание в цепи питающей от генераторов без автоматического регулирования возбуждения (APB). Трехфазное короткое замыкание в цепи питающейся от генераторов с (APB)
- 3. Основные характеристики и параметры синхронной машины
- 4. Сверхпереходные ЭДС и реактивности синхронной машины. Схема замещения генератора с демпферными контурами
- 5.Замыкания в распределительных сетях и системах электроснабжения
- 6. Электромагнитные переходные процессы при нарушении симметрии трехфазной цепи
- 7. Применимость метода симметричных доставляющих к исследованию переходных процессов

Перечень лабораторных занятий

- 1. Регистрация и отображение тока трехфазного короткого замыкания
- 2. Трехфазное АПВ линии электропередачи с односторонним питанием
- 3.Определение угловых характеристик P (δ), Q (δ), U (δ) синхронного генератора
- 4.Определение предельного времени отключения короткого замыкания
- 5. Анализ устойчивости электрической системы при малых возмущениях
- 6. Анализ устойчивости электрической системы при больших возмущениях

Темы контрольных заданий для СРС

- 1. Дайте определение таким понятиям, как режим работы системы, параметры системы, параметры режима, установившийся режим, переходный процесс, послеаварийный установившийся режим.
- 2. Какова вероятность коротких замыканий в электрических системах и какие существуют виды КЗ?
- 3. Перечислите наиболее часто встречающиеся причины возникновения коротких замыканий.
 - 4. Каковы наиболее тяжелые последствия коротких замыканий?
 - 5. Для каких целей проводятся расчеты коротких замыканий
- 6. Что такое обобщенный вектор трехфазной системы и какова его роль при анализе режимов работы электрической машины?
- 7. Какими уравнениями описывается переходный процесс в синхронной машине?

- 8. Какие существуют схемы замещения явнополюсных и неявнополюсных синхронных машин в расчетах переходных процессов?
- 9. Перечислите основные параметры синхронной машины и объясните их физический смысл.
- 10. Как в расчетах переходных процессов представляются трансформаторы?
- 11. Назовите способы представления нагрузок в расчетах переходных процессов.

Критерии оценки знаний студентов

Экзаменационная оценка по дисциплине определяется как сумма максимальных показателей успеваемости по рубежным контролям (до 60%) и итоговой аттестации (экзамен) (до 40%) и составляет значение до 100%.

График выполнения и сдачи заданий по дисциплине

Вид контроля	Цель и содержание задания	Рекоменду емая литература	Продолжи тельность выполне ния	Форма контроля	Срок сдачи	Баллы
Выполнение лабораторной работы №1	Углубленное изучение материала	[1], [2],[3]	1неделя	Текущий	5 неделя	5
Выполнение лабораторной работы №2	Описание электрической схемы соединений	[2], [4],[5]	1неделя	Текущий	5 неделя	5
Тестовый	Ответить на тестовые вопросы по темам 1- 7	[1],[2],[3]	1 контакт ный час	Рубежный	7 неделя	15
Выполнение лабораторной работы №3	Определение угловых характеристик $P(\delta)$, $Q(\delta)$, $U(\delta)$ синхронного генератора.	[2], [3],[4]	1неделя	Текущий	11 неделя	5
Выполнение лабораторной работы №4	Определение предельного времени отключения короткого замыкания	[2], [3],[4]	1неделя	Текущий	11 неделя	5
Выполнение лабораторной работы №5	Анализ устойчивости электрической системы при малых возмущениях	[2], [3],[4]	1неделя	Текущий	13 неделя	5
Выполнение лабораторной работы №6	Анализ устойчивости электрической системы при больших	[2], [3],[4]	1неделя	Текущий	14 неделя	5

	возмущениях					
Тестовый	Ответить на тестовые вопросы по темам 8- 15	[1],[2],[3]	1 контакт ный час	Рубежный	14 неделя	15
Экзамен	Проверка усвоения материала дисциплины	Весь перечень основной и дополнител ьной литературы	2 контактн ых часа	Итоговый	В период сессии	40
Итого						100

Политика и процедуры

При изучении дисциплины «Переходные процессы в электроэнергетике» прошу соблюдать следующие правила:

- 1. Не опаздывать на занятия.
- 2. Не пропускать занятия без уважительной причины, в случае болезни прошу предоставить справку, в других случаях объяснительную записку.
- 3. Быть предельно дисциплинированным и внимательным, беспрекословно выполнять все указания преподавателя, а также во время проведения лабораторной работы находиться непосредственно у исследуемой лабораторной установки.
- 4. Соблюдать правила техники безопасности.
- 5. Активно участвовать в учебном процессе.
- 6. Быть терпимыми, открытыми, откровенными и доброжелательными к сокурсникам и преподавателям.

Список основной литературы

- 1.Ульянов С.А. Электромагнитные переходные процессы в электрических системах. М.: Энергия, 2010
- 2. Переходные процессы в электрических системах: Учебное пособие. Ю.А.Куликов. Новосибирск: Изд-во НГТУ, 2002
- 3. Винославский В.Н. и др. Переходные процессы в системах электроснабжения. Киев: Вища школа, 2009
- 4.Веников В.А. Переходные электромеханические процессы в электрических системах. М.: Высшая школа, 2005
- 5.Ульянов С.А. Сборник задач по электромагнитным переходным процессам. М.: Энергия, 2008

Список дополнительной литературы

1. Справочник по электроснабжению промышленных предприятий. Под ред. Федорова А.А., Сербиновского Г.В. – М.: Энергия, 2005

 $2. \Pi$ особие для курсового и дипломного проектирования для электроэнергетических специальностей. Под ред. Блок В.М. — М.: Высшая школа, 2001

РОГРАММА ОБУЧЕНИЯ ПО ДИСЦИ (SYLLABUS)	ПЛИНЕ ДЛЯ СТУДЕНТ <i>А</i>
Дисциплина РРЕ 3318 «Переходные пр	роцессы в электроэнергетик
одуль РРЕ 14 «Переходные процессы (ре:	жимы) в электроустановках>
Гос. изд. лиц. № 50 от 3	31.03.2004.
Подписано к печати 20_г. Форма	ат 90х60/16. Тираж экз.
Объем уч. изд. л. Заказ №	Цена договорная